
Extended Introduction to Computer Science
CS1001.py , Lecture 9

Numeric Integral; Floating Point Arithmetic;
Finding Zeroes of Real Functions

Instructors: Benny Chor, Amir Rubinstein
Teaching Assistants: Amir Gilad, Michal Kleinbort

Founding Teaching Assistant (and Python Guru): Rani Hod

School of Computer Science
Tel-Aviv University

Spring Semester, 2017
http://tau-cs1001-py.wikidot.com

http://tau-cs1001-py.wikidot.com/

Lecture 8 Highlights

• The integral as a high order function; Numerical definite
integrals.

• Floating point arithmetic and its wonders.

• Finding roots of real valued functions: Binary search, and
Newton-Raphson iteration.

2 / 28

Finding Roots of a Real Valued Function, Take 1 ∗

You are given a black box that computes a real valued function, f(x).

You are asked to find a root of f(x) (namely a value a such that
f(a) == 0 or at least |f(a)| < ε for a small enough ε).

What can you do?

Not much, I’m afraid. Just go over points in some arbitrary/random
order, and hope to hit a root.

∗thanks to Prof. Sivan Toledo for helpful suggestions and discussions related to
this part of the lecture

3 / 28

Finding Roots of Real Valued Function, Take 2

You are given a black box to compute the real valued function f(x).
On top of this, you are told that f(x) is continuous, and you are
given two values, L and U , such that f(L) < 0 < f(U).

You are asked to find a root of f(x) (namely a value a such that
f(a) == 0 or at least |f(a)| < ε for a small enough ε).

What can you do?

4 / 28

The Intermediate Value Theorem
Suppose that f(x) is a continuos real valued function, and
f(L) < 0 < f(U) (where L < U , and both are reals). The
intermediate value theorem (first year calculus) claims the existence
of an intermediate value, C, L < C < U , such that f(C) = 0. There
could be more than one such root, but the theorem guarantees that
at least one exists.

For example, in this figure, f(−4) < 0 < f(8), so there is a C,
−4 < C < 8, such that f(C) = 0 (in fact there are three such C .

5 / 28

Root Finding Using Binary Search

Suppose that f(x) is a continuos real valued function, and
f(L) < 0 < f(U) (where L < U). Compute M = f((L+ U)/2).

I If M = 0, then M is a root of f(x).

I If M < 0, then by the intermediate value theorem, there is a
root of f(x) in the open interval ((L+ U)/2, U).

I If M > 0, then by the intermediate value theorem, there is a
root of f(x) in the open interval (L, (L+ U)/2).

Looks familiar?

By performing binary search on the interval, we converge to a root of
f(x) (will stop when |M | < ε).

6 / 28

Finding Roots of Real Valued Function, Take 3

You are given a black box that on input x outputs the value f(x).
On top of this, you are told that f(x) is differentiable (is smooth
enough to have a derivative), and you also get access to a black box
that on input x outputs the value f ′(x).

Your mission, should you choose to accept it, is to find a root of f(x)
(namely a value a such that f(a) == 0 or at least |f(a)| < ε for a
small enough ε).

What can you do?
(here, we’ll start discussing the Newton-Raphson iteration.)

7 / 28

The Newton–Raphson (Isaac and Joseph) Method
(1685–1690)

Let f(x) be a real valued function of one variable, which it is
differentiable everywhere.

We seek a root of the equation f(x) = 0.

Denote, as usual, the derivative of f at point x by f ′(x).

The Newton–Raphson method, or iteration, starts with some initial
guess, denoted x0, and iteratively computes

xn+1 = xn −
f(xn)

f ′(xn)

until some halting condition is met.

8 / 28

A Geometric Interpretation of Newton–Raphson Method

The Newton–Raphson method has a geometric interpretation:
Let xn be the current approximation to the root of f(x) = 0
(including the initial guess, x0). The next approximation, xn+1, is
the intersection point of the x-axis with the tangent to f at the point
xn (why?).

9 / 28

The Newton–Raphson Method, cont.

The Newton–Raphson method, or iteration, starts with some initial
guess, denoted x0, and iteratatively computes

xn+1 = xn −
f(xn)

f ′(xn)

until some halting condition is met.

It is easy to see that if the sequence converges to some limit, x∞,
then f(x∞) = 0. But it is far from obvious why convergence should
occur at all.

Under mild conditions on the function (e.g. existence of a root) and
the starting point, it can be shown that the process does converge to
a root of f(x).

10 / 28

Convergence Rate of the Newton–Raphson Method

It can be rigorously shown that if f ′(x0) 6= 0 and the root is of
multiplicity one†, then convergence in the neighborhood of a root
holds, and furthermore has a quadratic rate. Roughly speaking, the
number of correct digits doubles at each iteration.

The claim guarantees that under reasonable initial conditions, this
sequence of tangents’ intersection points converges to a root (and
even converges fast).

The proof uses the Taylor series expansion of f(x), close to a root.
For obvious reasons (e.g. insufficient background), the proof will not
be given or even attempted here.

Incidentally, the version we use is not due to Newton, but to the
much less known Raphson. (Joseph Raphson, approx. 1648–1715).

†f(x) = x · (x− 3)2 has two roots, 0 and 3. 0 has multiplicity one, while 3 has
multiplicity two.

11 / 28

Newton–Raphson in Python
from random import *

def NR(func , deriv=None , epsilon =10**(-8) , n=100, x0=None):

""" Given a real valued func and its real value derivative ,

deriv ,NR attempts to find a root , using Newton -Raphson method.

NR starts with a an initial x0 and performs n=100 iterations.

If the absolute value function on some x_i is smaller

than epsilon , None is the returned value """

if deriv is None:

deriv = diff_param(func)

if x0 is None:

x0 = uniform (-100. ,100.)

x=x0; y=func(x)

for i in range(n):

if abs(y)<epsilon:

print ("x=",x,"f(x)=",y,"convergence in",i, "iterations")

return x

elif abs(deriv(x))<epsilon:

print ("zero derivative , x0=",x0," i=",i, " xi=", x)

return None

else:

print("x=",x,"f(x)=",y)

x = x - func(x)/deriv(x)

y = func(x)

print("no convergence , x0=",x0 ," i=",i, " xi=", x)

return None 12 / 28

Newton–Raphson in Python: Some Comments

The function NR is a “high order function” in the sense that two of
its arguments, func and deriv, are themselves functions (from reals
to reals).

The function NR “assumes” that deriv is indeed the derivative of
func. We supply a default argument, the good-ole diff param of
the function (numeric derivative). Do check the mechanism by which
we do this (not the first one that comes to mind).

If you feed NR with functions that do not satisfy this relations, there
is no reason why will return a root of func.

If an argument x for which the derivative is very close to 0 is
encountered, NR prints a warning and returns None.

13 / 28

Newton–Raphson in Python: Some More Comments

The default argument n=100 determines the number of iterations,
epsilon=10**(-8) the accuracy, and x0=None the starting point.

Having x0=None as the starting point leads to executing the code
with x0=uniform(-100.,100.) (a random floating point number,
uniformly distributed in the interval [-100.0,+100.0]). Therefore,
different computations may well converge to different roots (if such
exist).

Syntactically, we could set the default directly as
x0=uniform(-100.,100.). This does not work in Python (trust,
but check!), and you may be asked to explain why.

14 / 28

Newton–Raphson in Python: Execution Examples
First, we run our function NR using the function f(x) = x2 + 2x− 7,
whose derivative is f(x) = 2x+ 2. Observe that f(x) has two real
roots, −1− 2

√
2 = −3.828427124,−1+ 2

√
2 = 1.828427124, and its

derivative has a root at x = −1. Here, we decided to supply the two
functions to NR as anonymous functions, using lambda expressions.
>>> NR(lambda x: x**2+2*x-7,lambda x:2*x+2)

x= 1.828427124746752 f(x)= 3.1787905641067482e-12

convergence in 9 iterations

>>> NR(lambda x: x**2+2*x-7,lambda x:2*x+2)

x= -3.8284271247590054 f(x)= 7.249489897276362e-11

convergence in 8 iterations

>>> NR(lambda x: x**2+2*x-7,lambda x:2*x+2)

1.82842712474619

>>> NR(lambda x: x**2+2*x-7,lambda x: 2*x+2,x0=-1)

zero derivative , x0= -1 i= 0 xi= -1

>>> (lambda x: 2*x+2)(-1)

0

>>> NR(lambda x: x**2+2*x-7,lambda x:2*x+2, x0 = -1.0000001)

x= -3.8284271247461903 f(x)= 8.881784197001252e-16

convergence in 29 iterations

>>> NR(lambda x: x**2+2*x-7,lambda x: 2*x+2,x0=-2)

-3.8284271250498643
15 / 28

Newton–Raphson in Python: A Second Example
Now, consider the function 4x3 − 8x+ 20.
In the interval [−2.2, 2.2] it looks as following:

The derivative of f is f ′(x) = 12x2 − 8. f has a local maximum at
x = −

√
2/3 = −0.816 and a local minimum at x =

√
2/3 = 0.816.

We will try both x0 = 2 and random starting points (NR default).

16 / 28

Newton–Raphson in Python: A Second Example

>>> NR(lambda x: 4*x**3-8*x+20, lambda x: 12*x**2-8, x0=2.)

x= -2.094551481753128 f(x)= -9.4113943305274e-09

convergence in 7 iterations

>>> NR(lambda x: 4*x**3-8*x+20, lambda x: 12*x**2-8)

random starting point

x= -2.094551481542353 f(x)= -1.1830536550405668e-12

convergence in 32 iterations

>>> NR(lambda x: 4*x**3-8*x+20) # default derivative

x= -2.09455148157013 f(x)= -1.2413075012318586e-09

convergence in 29 iterations

17 / 28

Newton–Raphson in Python: More Execution Examples

We now run our function NR using the function f(x) = x2 + 2x+7,
whose derivative is f(x) = 2x+ 2 as well. Observe that f(x) has no
real roots. Again, we supply the two functions to NR as anonymous
functions, using lambda expressions.

>>> NR(lambda x: x**2+2*x+7,lambda x: 2*x+2)

no convergence , x0= 0 i= 99 xi= -0.29801393414

>>> NR(lambda x: x**2+2*x+7,lambda x: 2*x+2,n=1000)

no convergence , x0= 0 i= 999 xi= 10.9234003098

>>> NR(lambda x: x**2+2*x+7,lambda x:2*x+2,n=100000)

no convergence , x0= 29.3289256937 i= 99999 xi= 3.61509706324

not much point in going on

>>> NR(lambda x: x**2+2*x+7,lambda x: 2*x+2,x0=-1)

zero derivative , x0= -1 i= 0 xi= -1

18 / 28

Newton–Raphson in Python: sin by million Example
We now run our function NR using the beloved function
f(x) = sin(106x), whose derivative is f ′(x) = 106cos(106x).
def sin_by_million(x): def sin_by_million_deriv(x):

return math.sin (10**6*x) return 10**6* math.cos (10**6*x)

#We start with the numeric derivative

>>> NR(sin_by_million , diff_param(sin_by_million))

89.2687780627 0.964613148463

...

x= 53.526379440327254 f(x)= -0.7126804756085253

no convergence , x0= 53.42557187766076 i= 99

#Let’s try to increase the accuracy in the numeric derivation

>>> NR(sin_by_million , diff_param(sin_by_million ,h=0.000001))

x= -0.09416715302867829 f(x)= -0.8698163554715612

...

x= -0.0941660981987043 f(x)= -3.8425752320545916e-09

convergence in 10 iterations

#now let’s use the symbolic derivative

>>> NR(sin_by_million , sin_by_million_deriv)

x= 32.249802028428235 f(x)= 0.5539528640085607

...

x= 32.24980261553293 f(x)= -2.4213945229881345e-09

convergence in 3 iterations 19 / 28

Cases Where the Newton–Raphson Method Fails
There are cases where the method fails to find a root, despite the
fact that a real root does exist. A specific example is

I f(x) = lnx− 1. This example is somewhat pathological since it
is defined (over the reals) only for x > 0. Its root is
x = e = 2.718281 If the starting point, x0, satisfies
0 < x0 < e, the iteration will converge to the root. However, if
x0 > e, the intersection of the tangent with the x-axis is
negative, we get into complex values, and never converge to a
solution.

20 / 28

Cases Where the Newton–Raphson Method Fails:
The f(x) = lnx− 1 function. Execution Examples

>>> NR(lambda x: math.log(x) - 1, x0=1.5)

initial point smaller than e

x= 2.7182818408322724 f(x)= 4.5518560032320465e-09

convergence in 4 iterations

>>> NR(lambda x: math.log(x) - 1, x0=10)

initial point larger than e

x= 10 f(x)= 1.302585092994046

Traceback (most recent call last):

File "<pyshell #10>", line 1, in <module >

NR(lambda x: math.log(x) - 1, x0=10)

File "/Users/benny/Dropbox/Intro_CS_Course/IntroCS_2017/Code2017/NR.py", line 41, in NR

y = func(x)

File "<pyshell #10>", line 1, in <lambda >

NR(lambda x: math.log(x) - 1, x0=10)

ValueError: math domain error

21 / 28

Cases Where the Newton–Raphson Method Fails (2)

There are cases where the method fails to find a root, despite the
fact that a real root does exist. A specific example is

I f(x) = 3
√
x.

This example is also somewhat pathological, since the derivative
at the root, x = 0, is +∞.

22 / 28

Cases Where the Newton–Raphson Method Fails:
The f(x) = 3

√
x function. Execution Examples

>>> NR(lambda x: x**(1/3))

zero derivative , x0= 17.583962736808118

i= 34 xi= (307104697948.0005 -4569312853.5441675j)

#x is complex. go figure

>>> NR(lambda x: x**(1/3))

zero derivative , x0= -95.35484532133836

i= 32 xi= (-384401949315.69366 -3473926036.0956345j)

#x is complex. go figure

The derivative is f ′(x) = 1
3 · x

−2/3, and it converges to 0 for values
of x with large absolute values (both negative and positive). On top
of this, Python tends to choose the cubic roots that are complex
numbers (and not the real valued ones), which leads to this weird
behavior.

23 / 28

Cases Where the Newton–Raphson Method Fails (3)

There are other cases where the method fails to find a root, despite
the fact that a real root does exist.

I If we run in the course of the iteration into an xi where the
derivative is zero, f ′(xi) = 0.

I There are even polynomials with bad starting points. Usually
one has to work hard to find them, and we won’t even try.

24 / 28

A Distorted Newton–Raphson Method

Suppose we cruelly modify the Newton–Raphson method, as
following: Let h(x) be any real valued function.

Start with some initial guess, denoted x0, and iteratatively computes

xn+1 = xn −
f(xn)

h(xn)

until some halting condition is met.

It is still true that if the sequence converges to some limit, x∞, then
f(x∞) = 0. But it is even further from obvious if convergence holds.

25 / 28

A Distorted Newton–Raphson Method: Examples

>>> def f(x):

return x**7+30*x**4+5*x-100

>>> def g(x): # the proper derivative of f

return 7*x**6+120*x**3+5

>>> def h(x): # a cousin of the derivative of f

return 7*x**6+10*x**3+55

>>> def k(x): # a remote relative of the derivative of f

return x**6+x**2+7

>>> NR(f,g)

x= -3.061222690393527 f(x)= -5.115907697472721e-13

convergence in 27 iterations

>>> NR(f,h)

x= -3.0612226903972872 f(x)= -8.735909773349704e-09

convergence in 51 iterations

>>> NR(f,h)

x= -3.061222690397729 f(x)= -9.762217700881592e-09

convergence in 67 iterations

>>> NR(f,k)

no convergence , x0= 65.37916743242721 i= 99

26 / 28

Distorted Newton–Raphson Method: More Examples

>>> def f(x):

return x**7+30*x**4+5*x-100

>>> def g(x): # the proper derivative of f

return 7*x**6+120*x**3+5

>>> def l(x): # not even a relative of g

return 5*x**4+x**2+77

>>> NR(f,l)

no convergence , x0= 0.561285440908 i= 99

>>> NR(f,l)

Traceback (most recent call last):

File "<pyshell #98>", line 1, in <module >

NR(f,l)

File "/Users/benny/Documents/InttroCS2011/Code/Intro12/lecture12_code.py", line 42, in NR

y=func(x)

File "<pyshell #14>", line 2, in f

return x**7+30*x**4+5*x-100

OverflowError: (34, ’Result too large’)

So apparently, to have convergence, the “fake derivative” should be
reasonably close to the true one. Enough is enough!

27 / 28

Generalization of the Newton–Raphson Method

Newton–Raphson uses the first order derivative of a differentiable
function, f(x).

If f(x) has derivatives of higher order (e.g. 2nd order, 3rd order,
etc.), there are improved root finding methods that employ them,
and typically achieve faster convergence rates.

These methods are generally known as the class of Householder’s
methods. We will not discuss them here.

28 / 28

