
Extended Introduction to Computer Science
CS1001.py

Generators for Streams

* Slides based on a course designed by Prof. Benny Chor

Module G

School of Computer Science
Tel-Aviv University

Spring Semester 2020-21
http://tau-cs1001-py.wikidot.com

Instructors: Elhanan Borenstein, Michal Kleinbort

Teaching Assistants: Noam Parzanchevsky,

Asaf Cassel, Shaked Dovrat, Omri Porat

http://tau-cs1001-py.wikidot.com/

Data Structures

1. Linked Lists

2. Binary Search Trees

3. Hash tables

4. Generators

2

Generators for Infinite Streams
• So far we handled finite (and not too large) data collections.

• We now change the setting a bit, and talk about infinite collections of data,
aka streams. For example:
• A router that handles incoming internet packages over time. Input just keeps

coming, and the router needs to direct it ”on the fly”.
• The “Secretary Problem”: a manager interviews applicants in random order, and

she makes a decision being unaware of the quality of yet unseen applicants

• Algorithms whose input is an endless data stream are called online algorithm
(as opposed to offline algorithms whose entire input is given at the function
call, which was the standard scenario assumed so far)

• Obviously, we cannot store the entire stream simultaneously

• In Python, such streams can be represented using generators, which are
created by generator functions.

3

Example1: Natural Number Generator

• Any function that contains a yield statement is termed a
generator function.

• When a generator function is called, no code in the body of
the function is executed. Instead, a generator object is
returned.

>>> nat = naturals()

>>> type(nat)

<class 'generator'>

4

def naturals():

n = 0

while True:

yield n

n+=1

Example1: Natural Number Generator (cont.)
• nat is a generator. To extract the “next” value in the stream it

represents, which is specified by the yield statement, we invoke
Python’s built-in function next:

>>> nat = naturals()

>>> next(nat)

0

>>> next(nat)

1

>>> [next(nat) for i in range(10)]

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

• We see that nat has a state, which is retained, unchanged, between
successive calls to next.

• We can have additional instances of the generator:

>>> nat2 = naturals()

>>> next(nat2)

0

>>> next(nat)

125

def naturals():

n = 0

while True:

yield n

n+=1

Execution Specification

• So far, our functions contained no state, or memory: successive calls to the function
with the same arguments produced the same results (assuming the function is
deterministic, and does not refer to a global variable, which may have changed).

• In contrast, when a yield statement of the form

yield expression

is encountered, the state of the function is ”frozen”, and the value of expression
is returned to the caller of next.

• By "frozen" we mean that all local state is retained, including the current bindings of
local variables, the instruction pointer (pointing at the next instruction to execute),
and the internal evaluation stack

• Enough information is saved so that the next time next is invoked, the function can
proceed exactly as if the yield statement were just another external call.

(see http://www.python.org/dev/peps/pep-0255/)
6

http://www.python.org/dev/peps/pep-0255/

Lazy Evaluation

• In programming language theory, lazy evaluation or call-by-need is an
evaluation strategy, which delays the evaluation of an expression until its
value is actually required.

• Python's generators employ lazy evaluation. The next item is evaluated
only when it is required, by means of executing next().

• The "opposite'' of lazy actions is eager evaluation, sometimes known as
strict evaluation. Eager evaluation is the evaluation behavior used in most
cases in most programming languages.

7

Example2: A Fibonacci Number Generator

>>> g = fib()

>>> g

<generator object fib at 0x1704fa8>

>>> next(g)

1

>>> next(g)

1

>>> next(g)

2

>>> [next(g) for i in range(10)]

[3, 5, 8, 13, 21, 34, 55, 89, 144, 233]
8

def fib():

""" returns a generator for

all Fibonacci numbers """

a, b = 1, 1

yield a

while True:

yield b

a, b = b, a+b

Get the n’th Fibonacci Number

def get_fib(n):

''' return the n'th fibonacci number '''

g = fib() # get the generator

for i in range(n-1):

next(g) # extract, no need to store

return next(g)

9

def fib():

""" returns a generator for

all Fibonacci numbers """

a, b = 1, 1

yield a

while True:

yield b

a, b = b, a+b

Example 3: Merging Sorted, Infinite Generators

• Suppose gen1 and gen2 are generators of sorted streams, both

infinite.
• We wish to produce a new sorted stream which is the merge of both.

10

def merge(gen1, gen2):

""" on input gen1, gen2,

two generators of infinite sorted streams,

produces the sorted merge of the two """

left = next(gen1)

right = next(gen2)

while True:

if left <= right:

yield left

left = next(gen1)

else:

yield right

right = next(gen2)

Example 3: Merging Sorted, Infinite Generators
(cont.)

>>> nat1 = naturals()

>>> nat2 = naturals()

>>> nat_twice = merge(nat1, nat2)

>>> next(nat_twice)

0

>>> next(nat_twice)

0

>>> next(nat_twice)

1

>>> next(nat_twice)

1

>>> [next(nat_twice) for i in range(10)]

[2, 2, 3, 3, 4, 4, 5, 5, 6, 6]

• Would merge work properly for finite generators?
11

Finite Generators and Generator Expressions

• When the generator is exhausted, a StopIteration runtime error is
raised.

• Finite generators can also be created using generator expressions (list
comprehension syntax inside ()):

>>> g = (x for x in range(2**100)) # note the () instead of []

>>> type(g)

<class 'generator'>

>>> next(g)

0

>>> next(g)

1

12

def f(n):

""" a finite generator """

for i in range(n):

yield i

>>> zero_one = f(2)

>>> next(zero_one)

0

>>> next(zero_one)

1

>>> next(zero_one)

Traceback (most recent call last):

next(zero_one)

StopIteration

More on Finite Generators

• We remark that it would not be possible to handle even finite but very
large collections without the lazy evaluation mechanism.

• For example, representing the first 108 integers can fit in just under 1GB
RAM. But what about 2100 elements?
A collection with 2100 elements will not fit in Amazon, Google, and NASA
computers, even if taken together.

DON'T TRY THIS AT HOME (well, really do try it once…)
typing this will cause IDLE to get stuck
>>> mylist = [n for n in range(2**100)]

• As we saw, we can represent this huge collection easily using generators
(at no time the entire collection will be stored in memory)

13

An Attempt to Merge Sorted, Finite Generators

• Should the generators in merge really be infinite?

>>> nat = naturals()

>>> zero_one = f(2)

>>> res = merge(nat, zero_one)

>>> next(res)

0

>>> next(res)

0

>>> next(res)

1

>>> next(res)

1

>>> next(res)

Traceback (most recent call last):

right = next(gen2)

StopIteration

14

What went wrong?

The merged generator, res, was not
yet exhausted, however one of the
arguments to merge, zero_one was
exhausted. The merging procedure
still invoked next(gen2). This has
caused a StopIteration error.

def f(n):

""" a finite generator """

for i in range(n):

yield i

Example 4: A Permutations Generator
• The following generator produces all permutations of a given

(finite) set of elements.

• The elements should be given as an indexable sequence (e.g.
list, tuple, or string)

• It allows one to produce all permutations, one by one,
without generating or storing all of them at the same time.

15

def permutations(seq):

if len(seq) <= 1:

yield seq

else:

for perm in permutations(seq[1:]): # all except 1st

for i in range(len(seq)): # location to insert 1st

yield perm[:i] + seq[0:1] + perm[i:]

Example 4: A Permutations Generator (cont.)

>>> a = permutations("mit")

>>> list(a)

['mit', 'imt', 'itm', 'mti', 'tmi', 'tim']

>>> a = permutations("") # the empty string

>>> list(a)

['']

16

Make sure the size
is under control

Limitations of Infinite Generators

17

• Given a possibly infinite iterator:

- Create a generator that generates the reverse sequence.

- Create a generator that generates only the elements that
appear more than once in the original sequence.

Both can't be done!

Limitations of Infinite Generators

18

More generally, the property that we need is ”finite delay”:

• The time it takes to generate the next single item of the
generated sequence is finite.

• One may also talk about polynomial delay, linear delay,
constant delay, etc.

• What delay did we have in all the previous examples?

Iterators
• Iterators in Python provide access to a given collection of items one by one

(this is in contrast to generators, which do not have to relate to any given
collection)

• Each type of collection in Python has its own iterator type
• For example list_Iterator, str_Iterator, dict_iterator, etc.

• When using a for loop to iterate over a collection, Behind the scenes a
suitable iterator object is created first, and then the collection’s items are
extracted, one by one, using next().

• Classes that enable for loops are called iterables.
• This includes any class with an __iter__ method, which is responsible for creating a

suitable iterator

19

For loop: Behind the Scenes

20

>>> for e in iterable:

do_something_with(e)

1. it← an iterator for iterable
2. While True:

2.1 e← next(it)

2.2 do_something_with(e)
3. Handle StopIteration by ignoring it

Handling Exceptions in Python
(for reference only)

21

A short diversion:
Handling Errors with try and except

• Python provides an elaborate mechanism to handle run time errors.
For example, division by zero causes a ZeroDivisionError .

>>> 5/0
Traceback (most recent call last):

File "<pyshell#37>", line 1, in <module>
5/0

ZeroDivisionError: int division or modulo by zero

• Such errors disrupt the flow of control in a program execution. We
may want to detect such error and allow the flow of control to
continue.

• This may not be so important in the small programs written in this
course, but becomes meaningful in large software projects.

• Python enables such detection, using the keywords try and except.

22

Handling Errors: try and except: example

def division(a,b):

try:

return a/b

except ZeroDivisionError:

print("division by zero")

• Let us now apply this function in two different cases:

>>> division(5,6)

0.8333333333333334

>>> division(5,0)

division by zero

• We will employ this error handling mechanism to enable merging any non-empty
sorted iterators, finite or infinite .

23

More on try and except
• The example in the previous slide is not so good – we can solve this problem with an if

statement.

• However, consider a situation where we would need to write many if statements to
handle division by zero. Instead, try/except wrap the whole block:

def compute(…):
try

a long computation, with several steps
that may cause zero division

except ZeroDivisionError:
print("division by zero")

• We will also use try/except when it is either impossible or expensive to check for the
condition in advance. Example – when we invert a matrix, checking in advance that it is
not singular would take as much time as inverting, so it makes more sense to try to
invert, and raise an exception if we discover that the matrix is singular while we do it.

• We can have multiple except clauses; a list of exceptions to be handled in each clause;
and the last clause may omit exception names (to handle all others)

24

Back to
Merging Any Non-Empty, Sorted iterators

def merge2(iter1, iter2):
""" on input iter1, iter2, two non-empty sorted iterators, not
necessarily infinite, produces sorted merge of the two iterators """

left = next(iter1)
right = next(iter2)
while True:

if left<right:
yield left
try:

left = next(iter1)
except StopIteration: # iter1 is exhausted

yield right
remaining = iter2
break

25

merge2 : cont.

else:
yield right
try:

right = next(iter2)
except StopIteration: # iter2 is exhausted

yield left
remaining = iter1
break

end of the while loop
for elem in remaining: # protects against StopIteration

yield elem

26

Merge2: Examples of Executions
>>> iter1 = (x**2 for x in range(4))
>>> iter2 = natural()
>>> merged = merge3(iter1,iter2)
>>> [next(merged) for i in range(14)]
[0, 1, 1, 2, 3, 4, 4, 5, 6, 7, 8, 9, 9, 10]

>>> iter1 = (x**2 for x in range(5))
>>> iter2 = (x**3 for x in range(6))
>>> merged = merge3(iter1,iter2)
>>> [next(merged) for i in range(11)]
[0, 0, 1, 1, 4, 8, 9, 16, 27, 64, 125]

Finally, let's see what happens when the original iterators/generators
are not sorted:

>>> iter1 = ((-1)**x*x**2 for x in range(5))
>>> iter2 = (x**3 for x in range(6))
>>> merged = merge3(iter1,iter2)
>>> [next(merged) for i in range(11)]
[0, 0, -1, 1, 4, -9, 8, 16, 27, 64, 125]
garbage in, garbage out

27

Iterators in Python
(for reference only)

28

Iterators - Motivation
• Linked lists and Python's built-in lists (arrays) are two ways

to represent a collection of elements. There are others,
such as trees, hash tables, and more.

• It is desirable that functions that use the data as part of a
computation should be as oblivious as possible to such
internal representation, which may change over time.

• This holds in particular for iterating over collections of
elements
• This idea is captured in a concrete way by Python's iterators.

Iterators will provide a generic access to a collection of items one
by one.

29

Iterables
• An iterable object is an object capable of

returning its members one at a time.

• In particular, we can use a for loop on iterables

• Examples of iterables include:
• all sequence types such as list, str , tuple and range
• some non-sequence types such as dict, set (and also File)
• objects of any user defined classes with an __iter__ or

__getitem__ method (this is how you make your new class
iterable. But we will not see this)

(see http://docs.python.org/dev/glossary.html#term-iterable)

30

http://docs.python.org/dev/glossary.html

Iterables
• For example, range in Python is iterable:

>>> a = range(10)

>>> type(a)
<class 'range'>

>>> a
range(0, 10)

>>> for i in a:
print(i)

0
1
2
…

31

Iterators
• An iterator is an object representing a stream of data.
• Each iterable type in Python has its own corresponding iterator type, created using

the built-in iter() function.
• Repeated calls to the built-in function next(it), where it is an iterator (or calls to the

iterator’s __next__() method) return successive items in the stream.
• When no more data are available a StopIteration exception is raised instead. At this

point, the iterator object is "exhausted'', and any further calls to next(it) just raise
StopIteration exception again.

>>> it = iter([0,1,2])
>>> type(it)
<class 'list_iterator'>
>>> next(it)
0
>>> next(it)
1
>>> next(it)
2
>>> next(it)
Traceback (most recent call last):

File "<pyshell#26>", line 1, in <module>
next(it)

StopIteration
32

>>> it = iter("ab")
>>> type(it)
<class 'str_iterator'>
>>> next(it)
'a'
>>> next(it)
'b'
>>> next(it)
Traceback (most recent call last):
File "<pyshell#6>", line 1, in <module>

next(it)
StopIteration

Iterables and Iterators
• We can create an iterator by calling the function iter with an iterable

object argument (like list, tuple, str, dict, range , etc.)
• This function does not modify the original iterable object.

>>> table = {"Benny":72,"Daniel":82,"Amir“:92}
>>> next(table)
Traceback (most recent call last):

File "<pyshell#13>", line 1, in <module>
next(table)

TypeError: dict object is not an iterator
>>> it = iter(table)
>>> next(it)
'Amir'
>>> next(it)
'Benny'
>>> next(it)
'Daniel'
>>> next(it)
Traceback (most recent call last):

File "<pyshell#18>", line 1, in <module>
next(it)

StopIteration33

For loop
• We mentioned that a for loop over an iterable actually uses an iterator.

• Here are the details:

>>> elems = ['a','b','c‘]

34

>>> for e in elems:
print(e)

a
b
c

>>> elems = ['a','b','c‘]
It = iter(elems)
while True:

try:
print(next(it))

except StopIteration:
break

a
b
c

=

Iterators and for Loops
• When we loop over an iterable using for, an iterator is created first, and

then the items are returned, one by one, using next().

>>> table = {"Benny":72,"Daniel":82,"Amir“:92}
>>> for key in table: # an iterator is created

print(key) # “under the hood”
more details later

Amir
Benny
Daniel

• As we see from this example, a dictionary (when transformed into an
iterator), returns the keys one by one.

• Files return the lines one by one, etc.

35

Iterators have "states"

• We can turn an iterator into a list as well. This list will reflect the current
state of the iterator, not its original state:

>>> table = {"Benny":72,"Daniel":82,"Amir":92}
>>> it = iter(table)
>>> next(it)
'Amir'

>>> list(it)
['Benny', 'Daniel']

>>> next(it)
Traceback (most recent call last):
File "<pyshell#82>", line 1, in <module>
next(it)

StopIteration

36

Thou Shalt Not Modify an iterable
during Iteration

• If we add or remove elements from an iterable during iteration,
strange things may happen. For example

>>> elems = ['a','b','c']
>>> for e in elems:

print(e)
elems.remove(e)

a
c

>>> elems
['b']

37

adapted from

http://unspecified.wordpress.com/2009/02/12/thou-shalt-not-modify-a-list-during-
iteration/

http://unspecified.wordpress.com/2009/02/12/thou-shalt-not-modify-a-list-during-iteration/

Iterators as a Tool for Abstraction
• The use of iterators hides the implementation of data collections. For

example, when we see the code

for x in SomeCollection:
….

We do not know if SomeCollection is a list, a dict, or any user defined
data collection. We just want to get our hands on its elements.

• Defining an iterator for SomeCollection will solve this problem, allowing
us to use a for loop regardless of the actual implementation.

• Furthermore, we can later modify the implementation of
SomeCollection, for example change it from a list to a dict, and the
code using it (for loop) will not have to be changed.

• Similarly when we use next(it), it may be an iterator of any type of a
data collection, with any order of traversal.

38

