
Extended Introduction to Computer Science
CS1001.py

Data Structures:
Hash Functions and Hash Tables

* Slides based on a course designed by Prof. Benny Chor

Module G

School of Computer Science
Tel-Aviv University

Spring Semester 2020-21
http://tau-cs1001-py.wikidot.com

Instructors: Elhanan Borenstein, Michal Kleinbort

Teaching Assistants: Noam Parzanchevsky,

Asaf Cassel, Shaked Dovrat, Omri Porat

http://tau-cs1001-py.wikidot.com/

Data Structures

1. Linked Lists

2. Binary Search Trees

3. Hash tables

4. Generators

2

Lecture Plan

We’ll introduce an additional, very efficient data
structure: hash table.

• Hash functions

• Hash tables

• Resolving collisions with chaining

• “Average” time complexity

• Implementation in Python

3

“Hash”?
• Definition (from the Merriam-Webster dictionary):

hash - transitive verb
1 a: to chop (as meat and potatoes) into small pieces

b: confuse, muddle
2 : to talk about: review -- often used with over or out
Synonyms: dice, chop, mince
Antonyms: arrange, array, dispose, draw up, marshal (also marshall), order, organize, range,
regulate, straighten (up), tidy

• In computer science, hashing has multiple meanings, often unrelated.
• For example, universal hashing, perfect hashing, cryptographic hashing, and geometric

hashing, have very different meanings.

• Common to all of them is a mapping from a large space into a smaller one.

• Today, we will study hashing in the context of hash tables

4

Hash Functions
• Hash function: a function that maps a large (possibly infinite) set to a

smaller set of a fixed size.

• Example for a hash function from integers to integers:

• Executions in class

• Note that this function spreads the (infinite) set of integers over a small
finite range (0-999).

• But what can such a function be possibly good for? soon…

5

def hash4int(n):

m = 1000

c = (5**0.5-1)/2 #some irrational, 0<c<1

return int(m*((n*c)%1))

Hash Functions (cont.)
• Hash function: a function that maps a large (possible infinite) set to a

smaller set of a fixed size.

• Example for a hash function from strings to integers:

• Note that this function spreads the (infinite) set of strings over a finite
range (0…p-1).

• But what can such a function be possibly good for? soon…

6

def hash4strings(st):

p = 2**120+451 # some arbitrary prime number

s = 0

for c in st:

s = (128*s + ord(c)) % p

return s

Python's Built-in hash Function
• Python comes with its own hash function, from any immutable type to

integers (both negative and positive):

>>> hash("Michal")

5551611717038549197

>>> hash("Amir")

-6654385622067491745

>>> hash((3,4))

3713083796997400956

>>> hash([3,4])

Traceback (most recent call last):

File "<pyshell #16 >", line 1, in <module >

hash([3,4])

TypeError: unhashable type: 'list'

• But what can such a function be possibly good for? soon…
7

Hashing with a Random Seed

• If you run this code yourself, you will probably encounter
different outputs from those in the last slide.

• This is because when IDLE starts, it randomly generates a
number called seed, which is used to compute the built-in hash
function

• This is intended to provide protection against denial-of-service attacks
caused by carefully-chosen inputs, designed to exploit a worst case
scenarios (which will be explained and analyzed soon).

• But as long as you work under the same instance of IDLE, hash
is consistent and deterministic. So consistency is kept for the
lifetime of an IDLE session

8

But what can such a function be
possibly good for?

9

…and now for the answer

• Suppose elements belong to a large set (possibly infinite), called the "universe",
denoted U

• for example: all possible ID numbers, all possible strings, etc.

• We need to store some 𝑛 elements from U, and 𝑛 <<|U|.

• for example: ID's of students in class right now, genes of an organism

• We store the elements in a table T called hash table, whose size is 𝑚 ≈ 𝑛.

• To map elements from U to T we use

a hash function ℎ: U {0, 1, … ,𝑚 − 1}

For example: ℎ = hash(key)%m

Element with key 𝑘 U

is stored (and searched for)

at index ℎ(𝑘) in T.

x

y

z

w

0

1

2

3

4

5

6

Hash Tables: Definition

10

x

z

y

w

T

m=7

h(x)

h(z)

h(y)

h(w)

U

n=4

• Handle collisions while providing efficient insert,
delete, search

Problem

11

x

y

z

w

0

1

2

3

4

5

6

x

z

?

w

T

h(z)

h(y)

U

Collisions

12

• Collision: ℎ(𝑘1) = ℎ(𝑘2) for 𝑘1 𝑘2

• Can we totally avoid collisions?

• How can we decrease the probability for collisions?

• Larger T

• “Better” h (more on that soon)

Pigeonhole principle:

if n+1 pigeons enter n holes,

at least 1 hole will contain at least 2 pigeons

x

y

z

w

0

1

2

3

4

5

6

x

z

?

w

T

h(z)

h(y)

U

Dealing with Collisions: Chaining Method

13

• Each cell in the table will contain a list (can be linked or not),
with all the elements ℎ maps to this cell

• How do we insert, search and delete elements?

[d , a]

T

d

b

c

e

a

[c , e , b]

U

Implementing Insert, Delete, Search

• Initialization: create a table T with 𝑚 empty lists

• Given an element with key 𝑘 ϵU:

• Search: compute 𝑖 = ℎ(𝑘) and check if list T[𝑖] contains the key 𝑘.

• Insert: compute 𝑖 = ℎ(𝑘)

if 𝑘 not in list T[𝑖], insert element to list T[𝑖].
otherwise? replace element or make no change.

• Delete: compute 𝑖 = ℎ(𝑘)

if 𝑘 in list T[𝑖], remove element from list T[𝑖].

14

U

Simple (interactive) Example for ID's

15

We want to store all students who attended class today, by their ID.

• U = {all possible Israeli ID numbers }

|U| = ?

• n = ?

• |T| = m = 10

• h(id) = id % m

0

1

2

3

4

5

6

7

8

9

T (m=10)

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

h(id) = id%m

Chaining – Time Complexity: Worst Case

16

• In each operation we compute ℎ(𝑘) and then iterate over a single chain

• The worst case time complexity, for the three operations search, insert
and delete in terms of 𝑛 is 𝑂(𝑛).

• This happens when all the elements inserted were hashed to the same
single cell

• Assumption: computing ℎ and comparing 2 elements both take O(1) time

[]U

T

d

b

c

e

a

[c , e, d, a , b]

[]

[]

[]

[]

[]

Chaining – Time Complexity: Average

17

• The worst case may indeed occur. But assuming ℎ was chosen carefully
and spreads elements rather uniformly and independently, the worst
case is very rare!
• The definitions of “uniformly” and “independently” will be taught in a probability

course.

• The scenario is often described as throwing 𝑛 balls into 𝑚 bins. The distribution
of balls in the bins (maximum load, number of empty bins, etc.) is a well studied
topic in probability theory.

The figure is taken from a manuscript titled “Balls and Bins -- A Tutorial",
by Berthold Vöcking (Universität Dortmund).

A Related Issue: The Birthday Paradox

18

(figure taken from http://thenullhypodermic.blogspot.co.il/2012_03_01_archive.html)

The Birthday Paradox

• A well known (and not too hard to prove) result is that if we throw 𝑛 balls

at random into 𝑚 distinct slots, and 𝑛 ≈ 𝜋 ⋅ 𝑚/2 then with probability
about 0.5, two balls will end up in the same slot.

• For 𝑚 = 365 we get 𝜋 ⋅ 365/2 ≈ 23.94

• This gives rise to the so called ”birthday paradox" - given 24 people with
random birth dates (month and day of month), with probability > 0.5 two
will have the same birth date

• Thus if our set of keys is of size 𝑛 > 𝜋 ⋅ 𝑚/2 most likely there will be a
collision

19

Chaining – Time Complexity: Average
(for reference only)

• Numerous additional results from probability theory are well
known. For example, we can ask what the expected maximal
capacity of a cell is.
• Maximal capacity = size of the largest colliding set

• Bottom line: worst case is rare.

20

expected maximal
capacity in a single slot

case

1 (=no collisions)𝑛 < 𝑚

𝑂(1/𝜀)𝑛 = 𝑚1−𝜖 , 0 < 𝜖 < 1/2

𝑙𝑛 𝑛

𝑙𝑛𝑙𝑛(𝑛)

𝑛 = 𝑚

𝑛

𝑚
+

𝑙𝑛 𝑛

𝑙𝑛𝑙𝑛(𝑛)

𝑛 > 𝑚

Chaining – Time Complexity: Average

21

• Assuming ℎ indeed “spreads elements well”, as mentioned above, it
makes sense to measure complexity in terms of the average length of
a chain (average here is on the various inputs).

• Average chain length is 𝛼 =
𝑛

𝑚
(𝛼 is termed the load factor).

• If we choose 𝑚 (table size) such that 𝑛 = 𝑂(𝑚), then 𝛼 = 𝑂(1).

• Therefore, all operations run in 𝑂(1) “on average”

• Note: assuring 𝑛 = 𝑂(𝑚) requires prior estimation of the number of
elements 𝑛 we expect to be inserted into the table, or a mechanism to
dynamically update the table size 𝑚

Python's dict and set
• Python's class dict and class set are both implemented behind the

scenes as hash tables.

• This explains why they are such good choices for storing and searching
elements. Indeed, we used them (rather than lists for example) for
memoization.

• dict and set however do not use chaining to solve collisions. They use
another approach called open addressing (more later and in the data
structures course)

• In addition, dict and set are dynamic hash tables – they expand and
shrink as the load factor becomes too large or too small, respectively.

• The exact details may change between versions (e.g. 3.7 and 3.8), due
to optimization efforts by the language developers. We will not delve
into those details.22

Time – Space Tradeoff

23

• We don't want 𝛼 to be neither too large (why?) nor too small (why?)

“Good” Hash Functions?
• You may wonder what it practically means to choose ℎ “carefully”.

• Is ℎ(𝑖𝑑) = 𝑖𝑑%100 a good hash function for id’s?

• When we have some apriori knowledge on the keys, their distribution
and properties, etc., we can tailor a specific hash function, that will
improve spread-out among table cells.

• However, such knowledge is not always at hand. In addition, as we
mentioned, choosing ℎ at random once in a while is a rather good idea.

• In the data structure course you will define a mechanism called universal
families to solve both problems

• Practically, we can expect Python's hash to do a good job.

24

Implementation in Python

• Let us implement our own class Hashtable in Python now.

• We will assume elements have only keys, so we are actually
implementing something that resembles Python’s sets.

• However, we will use chaining to resolve collisions.

25

Initializing the Hash Table

26

class Hashtable:

def __init__(self, m, hash_func=hash):

""" initial hash table, m empty entries """

self.table = [[] for i in range(m)]

self.hash_mod = lambda key: hash_func(key) % m

def __repr__(self):

return "".join([str(i) + " " + str(self.table[i]) + "\n" \

for i in range(len(self.table))])

Initializing the Hash Table
>>> ht = Hashtable (11)

>>> ht

0 []

1 []

2 []

3 []

4 []

5 []

6 []

7 []

8 []

9 []

10 []

27

Initializing the Hash Table: a Bogus Code
Consider the following alternative initialization:

>>> ht = Hashtable(11)
>>> ht.table[0].append(5)
>>> ht
0 [5]
1 [5]
…

>>> ht.table[0] == ht.table[1]
True
>>> ht.table[0] is ht.table[1]
True

The entries produced by this bogus __init__ are identical.
Therefore, mutating one mutate all of them.

28

class Hashtable:

def __init__(self, m, hash_func=hash):

""" initial hash table, m empty entries """

self.table = [[]]*m

class Hashtable:

…

def find(self, item):

""" returns True if item in hashtable, False otherwise """

i = self.hash_mod(item)

chain = self.table[i]

if item in chain: # a hidden loop

return True

else:

return False

def insert(self, item):

""" insert an item into table, if not there """

i = self.hash_mod(item)

chain = self.table[i]

if item not in chain: # a hidden loop

chain.append(item)

Dictionary Operations: Python Code

30

return item in chain

Example: A Very Small Table
(n = 14, m = 7)

In the following slides, there are executions construct a hash
table with m = 7 entries. We'll insert n = 14 string record in it
and check how insertions are distributed, and in particular what
the maximum number of collisions per cell is.

Our hash table will be a list with m = 7 entries. Each entry will
contain a list with a variable length. Initially, each entry of the
hash table is an empty list.

31

Example: A Very Small Table
(n = 14, m = 7)

>>> tribes = ['Reuben', 'Simeon', 'Levi', 'Judah', 'Dan',

'Naphtali', 'Gad', 'Asher', 'Issachar', 'Zebulun', 'Benjamin',

'Joseph', 'Ephraim', 'Manasse']

>>> ht = Hashtable(7)

>>> for name in tribes:

ht.insert(name)

>>> ht #calls __repr__

(next slide)

32

Example: A Very Small Table
(n = 14, m = 7)

>>> ht #calls __repr__

0 []

1 ['Reuben', 'Judah', 'Dan']

2 ['Naphtali']

3 ['Gad', 'Ephraim']

4 ['Levi']

5 ['Issachar', 'Zebulun']

6 ['Simeon', 'Asher', 'Benjamin', 'Joseph', 'Manasse']

33

Example: A slightly larger table
(n = 14, m = 21)

>>> tribes = ['Reuben', 'Simeon', 'Levi', 'Judah', 'Dan',

'Naphtali', 'Gad', 'Asher', 'Issachar', 'Zebulun', 'Benjamin',

'Joseph', 'Ephraim', 'Manasse']

>>> ht = Hashtable(21)

>>> for name in tribes:

ht.insert(name)

>>> ht #calls __repr__

(next slide)

34

Example: A slightly larger table
(n = 14, m = 21)

>>> ht #calls __repr__

0 []

1 []

2 []

3 ['Ephraim']

4 []

5 ['Issachar']

6 ['Benjamin']

7 []

8 ['Judah']

9 ['Naphtali']

10 []

11 []

12 ['Zebulun']

13 ['Manasse']

14 []

15 ['Reuben', 'Dan']

16 []

17 ['Gad']

18 ['Levi']

19 []

20 ['Simeon', 'Asher', 'Joseph']

35

Hashing and User-defined Classes
• So far we used our Hashtable class to store Python's built-in types

such as str and int.

• We will now use class Hashtable on our own class Student.

• As we will see, this will raise certain issues, which we will solve.

36

The Student Class (reminder)

class Student:

def __init__(self, name, surname, ID):

self.name = name

self.surname = surname

self.id = ID

self.grades = dict()

def __repr__(self): #must return a string

return "<" + self.name + ", " + str(self.id) + ">"

def update_grade(self, course, grade):

self.grades[course] = grade

def avg(self):

s = sum([self.grades[course] for course in self.grades])

return s / len(self.grades)

37

Hashing Students

>>> st1 = Student("Grace", "Hopper", 123456789)

>>> st2 = Student("Grace", "Hopper", 123456789)

>>> st1

<Grace, 123456789>

>>> st2

<Grace, 123456789>

>>> hash(st1)

-9223372036851698786

>>> hash(st2)

3077117

• This should not be a surprise to you: by default, Python uses the
memory address of an object to compute the value of hash on it.

38

From Wikipedia:
Grace Brewster Murray Hopper (1906 –1992), was an American
computer scientist and United States Navy Rear Admiral.
She was one of the first programmers of the Harvard Mark I
computer in 1944, invented the first compiler for a computer
programming language, and was one of those who popularized
the idea of machine-independent programming languages which
led to the development of COBOL, one of the first high-level
programming languages.

https://en.wikipedia.org/wiki/Harvard_Mark_I
https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/High-level_programming_language

The __hash__ Method
• We will add to class Student the special method __hash__.
• It defines the result of calling Python’s hash on an object of this

class.

class Student:

…

def __hash__(self): #so we can use hash(st) on a student

return hash(self.id) #assume student id number is a

unique identifier

• Notes:
1) __hash__ of Student class calls __hash__ of int class
2) We used merely the student’s id to compute a student's

hash, under the assumption that it is unique. We could
have used more fields of a Student object.

39

Hashing Students – almost done

>>> st1 = Student("Grace", "Hopper", 123456789)

>>> st2 = Student("Grace", "Hopper", 123456789)

>>> hash(st1) == hash(st2) == hash(st1.id)

True

40

Hashing Students – almost done
• Can you explain why the following search fails?

>>> st1 = Student("Grace", "Hopper", 123456789)

>>> st2 = Student("Grace", "Hopper", 123456789)

>>> ht = Hashtable(7)

>>> ht.insert(st1)

>>> ht

0 []

1 [<Grace, 123456789>]

2 []

3 []

4 []

5 []

6 []

>>> ht.find(st2)

False

41

Hash Tables Involve Comparisons

• Indeed, no much point in having __hash__ without __eq__, for
comparing elements (within a chain inside a table’s index).

class Student :

…

def __eq__(self, other):

return self.name == other.name and \

self.surname == other.surname and \

self.id == other.id

>>> ht.find(st2) # recall st2 holds same data as st1

True

42

Open Addressing

• In open addressing, each slot in the hash table contains at most one
item. This obviously implies that n cannot be larger than m.

• Each element enters the first vacant cell among a series of hash
outputs:

• Open addressing is important in hardware applications where devices
have many slots but each can only store one item (e.g. fast switches
and high capacity routers). It is also used in python dictionaries and
sets.

• There are many approaches to open addressing. A fairly recent one is
termed cuckoo hashing (Pagh and Rodler, 2001).

43

