
Extended Introduction to Computer Science

CS1001.py

Module H (Text):

Introduction to Text Compression

Huffman compression

Instructors: Elhanan Borenstein, Michal Kleinbort
Teaching Assistants: Noam Parzanchevsky, Asaf

Cassel, Shaked Dovrat, Omri Porat

School of Computer Science
Tel-Aviv University

Spring Semester 20-21
http://tau-cs1001-py.wikidot.com

http://tau-cs1001-py.wikidot.com/

2/ 85

Module H - Text Related Algorithms: Overview

► CYK parsing algorithm

► Text compression

• Huffman compression (today)
• Lempel-Ziv compression (next)

3 / 85

Lecture Plan

► Introduction to text compression

► lossless vs. lossy compression schemes
► Impossibility of universal lossless compression.

► Codes

► Letters’ frequencies in natural languages.
► Fixed length and variable length codes.
► Prefix free codes.

► Huffman code for compression

► Demo
► Implementation in Python

4/ 85

Introduction

Communication
Two parties, traditionally names Alice and Bob, have access to a
communication line between them, and wish to exchange information.

This is a very general scenario. It could be two kids in class sending
notes, written on pieces of paper or (god forbid) text messages under
the teacher’s nose. Could be you and your friend talking using
“traditional” phones, cell phones, or Skype. Could be an unmanned
NASA satellite orbiting Mars and communicating with Houston using
radio frequencies. It could be the hard drive in your laptop
communicating with the CPU over a bus, or your laptop running code
in the “cloud” via the “net”.
In each scenario, the parties employ communication channels with
different characteristics and requirements.

5 / 85

Three Basic Challenges in Communication

1. Reliable communication over unreliable (noisy) channels.

2. Secure (confidential) communication over insecure channels.

3. Frugal (economical) communication over expensive channels.

6 / 85

Three Basic Challenges in Communication
1. Reliable communication over unreliable (noisy) channels.

Solved using error detection and correction codes.

2. Secure (confidential) communication over insecure channels.

Solved using cryptography (encryption/ decryption).

3. Frugal (economical) communication over expensive channels.

Solved using compression (and decompression).

We treat each requirement separately (in separate classes). Of
course, in a real scenario, solutions should be combined carefully so
the three challenges are efficiently addressed (e.g. usually
compression should be applied before encryption).

Today, we will discuss compression.
7 / 85

8 / 85

Lossless Compression

A lossless compression scheme consists of two parts:

Compression, C, and decompression, D.

Both C and D are functions from binary strings to binary strings.
The major goal of a good compression algorithm is to have
len(C(x)) < len(x).

This, by itself, is obviously not hard to achieve. For example, we
could simply delete every second bit of x. However, under such
compression, it is not possible to reconstruct the original string, x.

So, in addition to the goal len(C(x)) < len(x), we also require: For
every x, if y = C(x), then D(y) = x.

9 / 85

Lossless vs. Lossy Compression

When compressing text, we normally want no data loss.

Note: for audio, images or video, lossy compression, in which part of
the data is lost, is often used.

If the human eye or ear (at least the average eye or ear) cannot
distinguish between the original and the decompressed version, then
lossy compression is typically acceptable and used. Compression can
be achieved, for example, by removing high frequencies from the
audio or image, or by reducing the number of color combinations.
Video is often compressible in 100:1 ratio, audio in 10:1, and images
in 5:1, with hardly any noticeable change in quality.

MP3 for audio, JPEG for images, and MPEG-4 for video are among
the well known, lossy compression schemes.

10/ 85

Universal Lossless Compression is Impossible

We say that a compression scheme is universal if for every x,
len(C(x)) < len(x).

Claim: There is no universal, lossless compression scheme.

Proof: A simple counting argument:

A lossless compression algorithm (mapping binary strings to binary
strings) must be one to one on its domain, {0, 1}∗. In particular, it

should map {0, 1}n in a one-to-one mapping to binary strings of
smaller lengths.

But there are not enough strings to map into: 2n strings in the
domain, only 2n − 1 strings in the range. ♠

11/ 85

Universal Lossless Compression is Impossible, cont.

The counting argument means we cannot compress everything.

For example, compression algorithms applied to random text will not
compress. They may even expand the text.

But real text is not random...

Huffman Code
We will now delve into Huffman text compression algorithm.

We will start be specifying two desired properties of that code:
variable-length, and prefix-free.

Huffman proposed the Huffman code while he was a graduate
student at MIT, as part of a term paper for Robert Fano’s class. In
Fano’s words,

“. . . by 1950, I started teaching a graduate subject on information
theory, and one of the students was named Dave Huffman, who wrote
a term paper. I had given a number of possible topics. One of them
was that while I developed the form of encoding, that did not assure
that the coding would be optimum. Shannon, who at that time was at
Bell Laboratories, was not sure. So I raised the question. I said, ”It
would be nice to know an optimum way of encoding.” All of which
Huffman developed as a term paper that he published, of course.”

(1952 paper, ”A Method for the Construction of Minimum
Redundancy Codes”) 12 / 85

13/ 85

Two Properties of Huffman Compression Code

► Variable length code

► Prefix-free code

14 / 85

Fixed vs. Variable Length Codes

In our context today, a code is a one-to-one mapping from single
characters to binary strings, called codewords.

A code is called fixed-length code if all characters are mapped to
binary strings of the same length. ASCII is a notable example.
In a variable-length code, different characters are encoded by binary
strings of different lengths. For example: Unicode.

Huffman code is also a variable-length code.

Basic Idea:

Frequent letters will be encoded using short binary strings.
Rare letters will be encoded using long binary strings.

This way, the encoding of a typical string will be shorter, since it
contains more frequent letters (where we save length) than rare ones
(where we pay extra length).

15/ 85

Frequencies of Letters in Natural Languages

The distribution of single letters in any natural languages’ texts is
highly non uniform.
We can compute these frequencies by taking a “representative text”,
or corpus, and simply count letters. For example, in English, “e”
appears approximately in 12.8% of all letters, whereas “z” accounts
for just 0.1%.

Frequencies of Letters in Natural Languages

The distribution of single letters in any natural languages’ texts is
highly non uniform. According to the diagram below (taken from
Wikipedia), the four most frequent letters are {e, t, a, o}. The letter e
appears in 12.8% of written English, t’s frequency is 9.05%, a’s is
8.1%, and o’s is 7.6%.

The frequencies in this diagram are based some “representative text”,
or corpus (for example, a dictionary).

16/ 85

17/ 85

More on Frequencies of Letters

Letter frequencies in different languages differ substantially. For
example, while in many European languages the letter e had the
highest frequency (like in English), the second most frequent letter is t
in English, n in German, and a in Spanish. In fact, the most frequent
letter in Portuguese is a (e is the second).

(data taken from Wikipedia.)

18/ 85

Using Non-uniformity in Letter Distribution for

Comprression

An important application of the non uniform frequency of letters is
text compression. The Huffman method encodes frequent letters
using short binary strings, and infrequent letters using longer binary
strings. A typical text contains more frequent letters than infrequent
letters. This enable the Huffman method to compress typical, human
produced texts and save as much as 40% (compressed text vs. original
text).

19/ 85

Why (else) We Care About Frequencies of Letters

• Breaking encryption

• Prove or disprove authorship of texts

• Layout of characters on mechanical typwriters

Not only character frequencies, but also bigram, trigram, word
frequencies, word length, and sentence length can be calculated and
used for various purposes.

Prefix Free Codes

A code is called prefix free code if for all pairs of characters γ, τ that
are mapped to binary strings C(γ), C(τ), no binary string is a prefix of
the other binary string.

Note that fixed length implies prefix free.

As a concrete example, consider the following three codes, both
mapping the set of six letters {a, b, c, d, e, f} to binary strings.

Code 1:
a b c d e f

000 001 010 011 100 101

Code 2:
f

Code 3:

a b c d e

0 10 110 1110 11110 111110

a b c d e f

0 1 00 01 10 11

20/ 85

Prefix Free Codes and Ambiguity

Code 1:
a b c d e f

Code 2:
a b c d

000 001 010 011 100 101

e f

Code 3:
b c d e

0 10 110 1110 11110 111110

a f

0 1 00 01 10 11

Code 1 is a fixed length code, hence it is also a prefix free code.

Code 2 and 3 are variable length codes.

Code 2 is a prefix free code: No codeword is a prefix of another.
Code 3 is not. For example, 1 is a prefix of 11.

Why do we care? Suppose you get the binary string 100 (no spaces!).
How would you decode it, according to each of the three codes?
100 encodes e by Code 1. It encodes ba by Code 2.

But by Code 3, it could encode baa or bc or ea, so we got ambiguity
here, which is bad. This is why variable length codes must be prefix

free. 21/ 85

A Demonstration of Huffman Code Construction

22/ 85

Constructing Huffman Tree

Assume that the character count is

[('a', 8), ('b', 3), ('h', 1), ('d', 1),

('e', 1), ('f', 1), ('g', 1), ('c', 1)]

The example is adapted from

Structure and Interpretation of

Computer Programs,

by Harold Abelson, Gerald Jay Sussman

h,1 d,1 e,1 f,1 g,1 c,1a,8 b,3

Initialization of the algorithm:
each character is a single-node tree.

• We insert all these into a priority queue: a data
structure that supports the operations insert
and extract smallest.

• We use a naive implementation of priority
queue: Python’s dict (other, more efficient
data structures for priority queue will be
learned in the data Structures course).

h,1 d,1 e,1 f,1 g,1 c,1a,8 b,3

Extract minimum twice:

h,1

d,1 e,1 f,1 g,1 c,1a,8 b,3

Extract minimum twice:

h,1 d,1

e,1 f,1 g,1 c,1a,8 b,3

Extract minimum twice:

h,1 d,1

hd,2

join the 2 extracted minimal nodes into a new tree:

e,1 f,1 g,1 c,1a,8 b,3

h,1 d,1

Insert the new tree into the priority queue:

a,8 b,3 e,1 f,1 g,1 c,1 hd,2

h,1 d,1

Now repeat the process:

a,8 b,3 e,1 f,1 g,1 c,1 hd,2

e,1

a,8 b,3

h,1 d,1

f,1 g,1 c,1 hd,2

Now repeat the process:

e,1 f,1

a,8 b,3

h,1 d,1

g,1 c,1 hd,2

Now repeat the process:

ef,2

e,1 f,1

a,8 b,3

h,1 d,1

g,1 c,1 hd,2

h,1

a,8 b,3 g,1 c,1 hd,2

d,1 e,1 f,1

ef,2

g,1

a,8 b,3

h,1

c,1 hd,2

d,1 e,1 f,1

ef,2

g,1 c,1

a,8 b,3

h,1

hd,2

d,1 e,1 f,1

ef,2

a,8 b,3

h,1

hd,2

d,1 e,1 f,1

ef,2

gc,2

g,1 c,1

a,8 b,3

h,1 d,1

hd,2

e,1 f,1

ef,2

g,1 c,1

gc,2

a,8 b,3

h,1 d,1

hd,2

e,1 f,1

ef,2

g,1 c,1

gc,2

a,8 b,3

g,1 c,1

gc,2

hd,2 ef,2

d,1 e,1 f,1h,1

a,8 b,3 gc,2

g,1 c,1

hdef,4

hd,2 ef,2

d,1 e,1 f,1h,1

a,8 b,3 gc,2

g,1 c,1

h,1 d,1

hd,2

e,1 f,1

ef,2

hdef,4

a,8 b,3

gc,2

h,1 d,1

hd,2

e,1 f,1

ef,2

hdef,4

g,1 c,1

b,3

a,8

gc,2

h,1 d,1

hd,2

e,1 f,1

ef,2

hdef,4

g,1 c,1

a,8

h,1 d,1

hd,2

e,1 f,1

ef,2

hdef,4

b,3

g,1 c,1

gc,2

gcb,5

a,8

h,1 d,1

hd,2

e,1 f,1

ef,2

hdef,4

b,3

g,1 c,1

gc,2

gcb,5

a,8

h,1 d,1

hd,2

e,1 f,1

ef,2

b,3

g,1 c,1

hdef,4

gc,2

gcb,5

a,8

h,1 d,1

hd,2

e,1 f,1

ef,2

hdef,4

b,3

g,1 c,1

gc,2

gcb,5

a,8

h,1 d,1

hd,2

e,1 f,1

ef,2

hdef,4

b,3

g,1 c,1

gc,2

gcb,5

hdefgcb,9

a,8

h,1 d,1

hd,2

e,1 f,1

ef,2

hdef,4

b,3

g,1 c,1

gc,2

gcb,5

hdefgcb,9

a,8

h,1 d,1

hd,2

e,1 f,1

ef,2

hdef,4

b,3

g,1 c,1

gc,2

gcb,5

hdefgcb,9

h,1 d,1

hd,2

e,1 f,1

ef,2

hdef,4

b,3

g,1 c,1

gc,2

gcb,5

hdefgcb,9a,8

a,8

h,1 d,1

hd,2

e,1 f,1

ef,2

hdef,4

b,3

g,1 c,1

gc,2

gcb,5

hdefgcb,9

hdefgcba,17

The queue contains a
single element. Loop ends

a

b

1
0

0

0

0

e

0

h

0

g

1

1

c

1
0

1

d

1

1
f

Now we can create the codes for each letter by
following the paths from the root to the leaves.
“a”: 0, “h”: 1000, “f”: 1011, ….

Building the Huffman Code: A Road Map

LearningPhase

corpus

Frequencies
dictionary
{char:count}

Huffman

tree (tuple)

char_count

build_huffman_tree

Encoding
dictionary
{char:code}

generate_code
Text Compressed

text
compress

decompress

Flow diagram of Huffman compression process

55/ 85

Binary Tree Represented as a Recursive 2-Tuple

a,8

h,1 d,1

hd,2

e,1 f,1

ef,2

hdef,4

b,3

g,1 c,1

gc,2

gcb,5

hdefgcb,9

hdefgcba,17

(' a ' , (((' h ' , ' d ') , (' e ' , ' f ')) , ((' g ' , ' c ') , ' b ')))

56/ 85

57/ 85

Huffman Code Construction: The main steps

► Collect character counts from a representative corpus.

► Construct Huffman tree.
The Huffman tree is a binary tree whose leaves represent letters,
and the path from the root to a leave represents the encoding of
the letter, considering left as 0, and right as 1.

► Turn the tree into an encoding dictionary (characters to binary
strings).

The first step of the road map: char count

We will use the function char count:

58/ 85

59/ 85

The first step of the road map

The following small example is adapted from Structure and
Interpretation of Computer Programs, by Abelson and Sussman):

Next, we construct the Huffman Tree.

60/ 85

Constructing the Huffman Tree

► Create a priority queue (dictionary) to represent letters’ counts.

► Initially, each element in the priority queue includes a single
character and its count (aka weight). These are viewed as single
node trees. They will be the leaves of the tree in the end of the
process.

► Iterate the following: Remove the two smallest-weight items
from the priority queue. Join them to form a new, combined
item, whose weight equals the sum of the two weights, and place
it in the priority queue
► It represents a new tree, whose root is the new node, and whose

children are the two trees that were joined. So each node includes
a set of characters and its total weight (sum of counts).

► The end result is a priority queue (dictionary) with one
compound item representing the Huffman tree.

61/ 85

Dict methods pop, popitem and update

62/ 85

Building the Huffman Tree, represented as a Recursive 2-

Tuple

63/ 85

Extract Item with Minimal Count

We iterate over the queue and look for the minimal count:

64/ 85

Building the Huffman Tree: Same Small Example

65/ 85

From Huffman tree To Huffman Code (Recursively)

Assign the empty string to the root. Then recursively assign 0 for left subtree,
1 for right subtree. Returns a dictionary, with keys being characters at leaves.

Oh, the beauty of recursion...

66 / 85

From Huffman tree To Huffman Code: A Small Example

Explanation: In each call, the value of prefix is the path from the
root to the current node. If the node is a leaf, create a dictionary
with a single entry. Otherwise use two recursive calls to create two
dictionaries, and combine them.

A small example:

The length of encodings vary from 1 to 4.
More frequent letters are assigned shorter encodings.

67/ 85

Employing Huffman Encoding for String Compression

We go over the text we want to compress, one character at a time.
For each character we access its value in the encoding dictionary.
This value is a binary string, which we concatenate (using join) to the
forming output (binary string).

68/ 85

Decompression using the Huffman Tree: Code

69/ 85

Decompression using the Huffman Tree: Example

70 / 85

A Comment on the Huffman Tree Structure

Two degrees of freedom:

1) During the construction of the Huffman tree, whenever there is
more than one element with the same minimal weight, the
element that is extracted may depend on the implementation.

2) Selecting which of the two minimal elements will be used as the
left offspring and who as the right offspring, can also be
implementation depedent.

Hence, different implementation may yield a different tree for the
same initial dictionary.

Such different trees may have the same structure with some letters
changing positions, but they may also have different structure.

However all these trees will yield an optimal code (definition coming
soon).

71 / 85

The No Compression Alternative: Fixed Length Encoding

For simplicity, let’s assume we use only ASCII characters, each
requiring 7 bits.

The first parameter to join (an empty string in this case) is the
“glue”, with which the second parameter is joined.

72/ 85

The Full Cycle: Encoding, Compressing, Decompressing

73 / 85

The Full Cycle: Encoding, Compressing, Decompressing

(cont.)
Let us now compress and decompress a few sentences.

corpus = ”””Selected Alan Perlis Quotations:
(1) It is easier to write an incorrect

program than understand a correct
one.

(2) One man’s constant is another man’s variable. ”””

text = ”fun”

Executions and explanations in class.

What does that mean?

74 / 85

The Full Cycle: Encoding, Compressing, Decompressing

(cont.)

On the first trial we got the code generated from the corpus, but
when compressing, we got this error message:

How should we fix this?

75 / 85

Missing Characters in the Corpus

Indeed, the corpus did not include all characters in the text, and in
particular the character ’f’:

76 / 85

Missing Characters in the Corpus - Take 1

corpus = ”””Selected Alan Perlis Quotations:
(1) It is easier to write an incorrect

program than understand a correct
one.

(2) One man’s constant is another man’s variable. ”””

text = ”fun”

Executions and explanations in class.

77 / 85

Compression Ratio - Take 1

corpus = ”””Selected Alan Perlis Quotations:
(1) It is easier to write an incorrect

program than understand a correct
one.

(2) One man’s constant is another man’s variable. ”””

text = ”fun”

text len in bits: 21
110011011101011101110
compressed len in bits: 18
10000110000101110
compression ratio: 0.8571428571428571

78 / 85

Missing Characters in the Corpus - Take 2
In this case the only missing character was ’f’.

Generally, we could meticulously go over the missing characters and
add them to the corpus. But this approach is rather tedious.

Instead, we will form a new string, which will be the concatenation of
all strings in the ascii code. We will concatenate this string, to the
corpus, thus making sure every ascii character is represented.

This will change the counts. However, for a large corpus, the effect is
so slight we will hardly notice it (and yes, we do know that many of
the ASCII characters are obsolete and not really needed).

79 / 85

Missing Characters in the Corpus - Take 2

corpus = ”””Selected Alan Perlis Quotations:
(1) It is easier to write an incorrect

program than understand a correct
one.

(2) One man’s constant is another man’s variable. ”””

text = ”fun”

Executions and explanations in class.

80 / 85

Compression Ratio - Take 2

corpus = ”””Selected Alan Perlis Quotations:
(1) It is easier to write an incorrect

program than understand a correct
one.

(2) One man’s constant is another man’s variable. ”””

text = ”fun”

text len in bits: 21
110011011101011101110
compressed len in bits: 19
01100010111011011110

compression ratio: 0.9047619047619048

81/ 85

Compressing a Random String

82 / 85

Compressing a Random String - Results

So Huffman cannot save even a single bit out of long random strings.
On the other hand, it does not expand it either!
To understand why, recall that the frequency of all letters is equal.
How would the Huffman tree look like?

Huffman Code: Time Complexity

Let n be the length of the corpus.
Let m be the length of the text to compress.
Let b be the length of the bit string after compression.
Assume the size of the alphabet (number of different characters) is
O(1).

• char count takes O(n) time on average (each access to the
dictionary takes O(1) on average).

• build huffman tree takes O(1) time on average (the size of the
dictionary is O(1)).

• generate hcode takes O(1) time on average (tree has O(1)
nodes).

• compress takes O(m) time on average.

• decompress takes O(b) time worst case (each tree move takes
O(1) W.C).

83 / 85

84 / 85

Optimality of Huffman Code

85/ 85

Compressing Text Beyond Huffman

A completely different approach was proposed by Yaacov Ziv and
Abraham Lempel in a seminal 1977 paper (“A Universal Algorithm for
Sequential Data Compression”, IEEE transactions on Information
Theory).

Their algorithm went through several modifications and adjustments.
The one used most these days is by Terry Welch, in 1984, and known
today as LZW compression.

Unlike Huffman, all variants of LZ compression do not assume any
knowledge of character distribution. The algorithm finds
redundancies in texts using a different strategy.

We will go through this important compression algorithm in detail.

