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And Now For Something Completely Different*,**

.זו הזדמנות לקפוץ חזרה על הרכבת, מי שהלכו קצת לאיבוד. שקף עם כותרת זו יישמש להדגשת המעבר בין חלקים שונים בקורס* 

אנו מזמינים אתכם לשלוח לנו הצעות לתמונות שיופיעו על שקפים אלו** 
2

Source: https://www.pinterest.ca/pin/202380576975644458/

https://www.pinterest.ca/pin/202380576975644458/


Lecture 24-25: Plan
• Introduction to Digital Image Representation:

• Greyscale and color images

• Bit depth, resolution

• Generating synthetic images

• Manipulating images

• Basics of Digital Image Processing

• Noise reduction:
• Noise models: Gaussian, Salt & Pepper

• De-noising with local means, local medians

• Additional examples, time permitting
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communication

Brief "Historical" Technological Context
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A Brief Historical Context, Few Decades Later
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• With the proliferation of 

(1) larger and faster memory, 

(2) strong, inexpensive processors, 

(3) faster internet, 

• Facebook stores about 350 million photos DAILY (4000/sec, reported 2019). 

>250 billion photos where uploaded in total.

• The total number of photos+videos shared on Instagram is 40 billion (2010-2019).

• This dramatic technological progress is reflected by the following saying, often attributed 

(apparently incorrectly) to Bill Gates, in 1981: "640KB ought to be enough for anybody".

it became possible to efficiently 

(1) store,

(2) process, and 

(3) transmit large digital images.
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Digital Image Representation

• A digital image is commonly represented as a numeric 2D matrix.

• Each element 𝑀[𝑥, 𝑦] is called a pixel (picture element).

Pixel values convey information about the light intensity / color

at that location of the image.

pixel 

(m-1,0)

pixel 

(0,0)

.

pixel 

(x,y)
.

.

pixel 

(0,n-1)

n x m matrix

n rows

m columns

y

x M
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RGB vs. Greyscale Images
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(images from Wikipedia)

• For standard RGB* color images, 𝑀[𝑥, 𝑦] is a triplet of 
values, representing the red, green, and blue components 
of the light intensity at that pixel.

• For grey-level images, 𝑀[𝑥, 𝑦] is a non-negative number, 
representing the light intensity at that pixel.

* RGB is one common representation of colors. CMY is another one



Some Fun with Color Representation
(for self exploration)
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From Computer Science Field Guide:
• https://csfieldguide.org.nz/en/chapters/data-representation/images-and-colours/

https://csfieldguide.org.nz/en/chapters/data-representation/images-and-colours/


Grey Level format

• For the sake of simplicity, the remainder of this class will deal with 
greyscale images only. 
• However, what we will do is applicable to color images as well with minor 

modifications.

• Real numbers expressing visual signal have to be discretized in 
order to enable their representation on bounded precision digital 
devices. A good quality greyscale photograph (that is, good by 
human visual inspection) has 256 grey-level values per pixel. 
• This requires 8 bits per pixel
• The value 0 represents black, while 255 represents white. 
• For each pixel, the closer its value is to 0, the blacker it is. So 128 is considered a 

mid-way grey.
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• 256 grey level image: 0 = black, 255 = white

38,  26,  21, 36,  19,  28,  33, 44, 31, 112, 

77,  83,  34, 168, 159, 48,  50, 14, 55, 211, 

112, 137, 34, 101, 129, 62,  54, 40, 21, 86, 

41,  46,  35, 19,  35,  52,  18, 57, 39, 123, 

38,  16,  38, 67,  45,  21,  29, 59, 10, 130, 

45,  43,  46, 51,  44,  39,  53, 31, 24, 64, 

47,  30,  54, 45,  40,  46,  23, 26, 58, 40, 

71,  57,  66, 63,  70,  84,  65, 62, 91, 49, 

72,  55,  43, 57,  90,  111, 92, 73, 74, 56, 

47,  45,  36, 78,  114, 113, 81, 54, 57, 44

Grey Level Images - Example

10



• Bit depth = number of bits per pixel:

• A human observer is able to discriminate between at most a few hundreds 

shades of gray in optimal conditions (some estimations are lower, 

depending also on the background, distance from the image etc.). 

• We remark that in some applications, such as medical imaging, 4096 grey 

levels (12 bits) are used. Higher bit depth images are sometimes aimed for 

an automated analysis by a computer. 

Image from:

http://micro.magnet.fsu.edu/

Image Bit Depth

1111

http://micro.magnet.fsu.edu/
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BW / Grayscale / RGB - Summary

256 gray level image

(8 bpp)

"true color" image

(8+8+8 = 24 bpp)

Images from: http://www.csse.uwa.edu.au/~wongt/matlab.html

B&W

(1 bpp)

12
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Python Imaging Library – PIL/PILLOW

• We will demonstrate topics with "real" images using the external 

package PILLOW

• Installation instruction: open command prompt and type:
python -m pip install --upgrade pip

and then
python -m pip install --upgrade Pillow

(if this doesn’t work replace python with python3)

• Upon successful installation, the following line should not raise 

an error:

>>> from PIL import Image

13



Basic Handling of Images using PIL
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>>> from PIL import Image

# Open image

>>> img = Image.open("./guess.bmp")

>>> img.size

(388, 541) #width, height

>>> img.show() # display

# convert to 256 gray levels

# so the code we write later will work

>>> img = img.convert('L')

# get grey levels distribution (0-255)

>>> img.histogram()

# Save as a new file

>>> img.save("./new_image", "bmp")

"./" =  current folder
"../" =  parent folder



Guessing Game

15

>>> img.size

(388, 541) #width, height

# crop(min_x, min_y, max_x, max_y)

>>> region = img.crop((200,400,220,450))

>>> region.show()

200 220

400

450

387

|

540-

0

|
0-



The Matrix Representing an Image
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>>> im = Image.open("./some_image.jpg").convert('L')

>>> mat = im.load() 

>>> mat[0,0] #upper left corner

31 

>>> mat[0,0] = 255

>>> mat[0,0]

255 

>>> for x in range(20):

for y in range(20):

mat[x,y] = 255

>>> im.show()

• In order to change the image pixels we load the matrix 

representing it

• Note: changes in the matrix WILL affect the image



Generating Synthetic Images
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def create_img(w, h, op):

''' create a w X h image

assign pixel x,y with op(x,y) '''

img = Image.new(mode='L', size=(w,h), color=255)

mat = img.load()

for x in range(w):

for y in range(h):

mat[x,y] = op(x,y)

return img

Initial color
256 grayscale 

format



Some Examples (Executions in Class)
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# Define constants to ease code readability

WHITE = 255

BLACK = 0

rnd_img = create_img(256, 256, lambda x,y: random.randint(0,255))

ver_lines = create_img(100, 300, lambda x,y: BLACK if x%10==0 else WHITE)

n=512

diagonal = create_img(n, n, lambda x,y: BLACK if x-y==0 else WHITE)

framed_diagonal = create_img(n, n, lambda x,y: 

BLACK if x==0 or y==0 or \

x==n-1 or y==n-1 or \

x==y or x+y==n-1 \

else WHITE)

what = create_img(n, n, lambda x,y,c=1: (c*(x-y))%256)

circles = create_img(n, n, lambda x,y,c=1: (c*(x**2 + y**2)) % 256)

product = create_img(n, n, lambda x,y,c=1: (c*x*y) % 256)



Padlet for your own creative images
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https://padlet.com/amirr6/euhqfxrey5f4emmu

• We urge you to play with the code, be as creative as you 

can, or simply use trial and “error”.

https://padlet.com/amirr6/euhqfxrey5f4emmu
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Manipulating Images

20



Manipulating Images

21

def process_img(img, op):

''' process image img (PIL.Image object) '''

w,h = img.size

mat = img.load()

new_img = img.copy()

new_mat = new_img.load()

for x in range(w):

for y in range(h):

new_mat[x,y] = op(mat, x, y)

return new_img



Some Examples (Executions in Class)
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# Define constants to ease code readability

WHITE = 255

BLACK = 0

img = Image.open("./some_image.jpg").convert('L')

white_square = \

process_img(img, lambda mat, x, y: WHITE if x<100 and y<100 else mat[x,y])

color_shifted = process_img(img, lambda mat, x, y, k=30: (mat[x,y]+k)%256 )

negative = process_img(img, lambda mat, x, y: 256-mat[x,y])

w,h = img.size

upside_down = process_img(img, lambda mat, x, y: mat[x,h-y-1])



Tiling Multiple Images
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def tile(*images):

''' Join several images horizontally for easy display.

Assume all images are of the same size 

The * before the parameter means a variable number of parameters '''

w,h = images[0].size

n = len(images) #number of images

new = Image.new('L',(w*n+n,h), 255) #+n for some space between images

for i in range(len(images)):

new.paste(images[i], (w*i+i,0)) #+i for some space between images

return new

• A useful utility function that tiles several images together, 

horizontally, assuming all images are of the same size:

Do you 
understand this?
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Noise Reduction

24
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• A signal is any physical quantity, measurable through time or over 

space.

• Examples: radio, telephone, radar, sound, light,…

• Signal processing: applying mathematical techniques for the 

extraction, transformation and interpretation of signals.

• Signal processing may take two major flavors: 

1) digital (discrete) 

2) analog (continuous)

• Naturally, in this course we explore the first option

Signals

25



Digital Image Processing
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• Image processing is any form of signal processing for which the 
input is an image, such as a photograph or video frame.

• The output of image processing may be either an image or a set 
of characteristics or parameters related to the image. 

• Most image processing techniques involve treating the image as 
a two-dimensional signal and applying standard signal processing 
techniques to it .

(text and figure taken
from Wikipedia).



CCD (for reference only)

27 (image and text taken from http://www.axis.com/edu/axis/ )

• CCD (charge coupled device): transforming light (photons) to 
electrical voltage

• Each captor of the CCD is roughly a square area, in which the 
number of incoming photons is being counted for a fixed time 
period.



Noise
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• Digital cameras (as well as traditional film cameras, microscopes, etc.) are 

susceptible to noise formation. 

• Noise sources include flecks of dust inside the camera, faulty sensors or 

recording elements, the deviation of electrons from their original path (a 

phenomenon called electron hiss), etc.

• A basic noise model:

At any pixel (x,y) the observed value S(x,y) equals the sum of the “true” 

value I(x,y) plus some noise N(x,y).

S(x, y) = I(x, y) + N(x, y)

• The goal of noise reduction, or denoising algorithms, is to produce a new 

image, which should be as close as possible to the “true” image I.

• Note that the values I(x,y) are not known to us! All we have is S(x, y).



Noise and Denoising Models

29

• Two very basic noise types we will see:

1. Gaussian noise

2. Salt and Pepper noise

• Two basic denoising approaches, based on local operators:

• Local means (operator = average)

• Local medians (operator = median)

Other, non-local methods, consider farther parts of the 

image.



Assumptions on the Images

• We assume the image is piecewise smooth: 

Most of the image's area consists of regions where light 
intensity varies smoothly: if 𝑀[𝑥1, 𝑦1] and 𝑀[𝑥2, 𝑦2] are 
neighbors, then they attain close enough values.

30



Gaussian Noise Model

• The noise ingredient 𝑁(𝑥, 𝑦) at each pixel is a random 
variable.

• It is usually assumed that 𝑁(𝑥, 𝑦) is distributed normally and
independently of the noise at other pixels.

• So each pixel in the image is changed from its original value 

by some (usually small) amount. Small deviations from the 

original value are more likely than large ones.

31



Gaussians (for reference only)

32 Three Gaussians, with σ = 0.5, 1, 2 (σ = 0.5 is the narrowest).

• The probability density function 

2 2/2

( )
2

xe
G x




 





is called the Gaussian, or normal, distribution. It has mean 0 and 
standard deviation (SD) σ. This is a continuous function, which is the 
limit of the Binomial distribution, as the number of events tends to 
infinity. 

The Gaussian has the well known bell curve shape.
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68% of the distribution lies within one 
standard deviation of the mean. 95% of the 
distribution lies within two standard deviations 
of the mean. 99.7% of the distribution lies 
within three standard deviations of the mean. 
These percentages are known as the "empirical 
rule".

http://www.regentsprep.org/regents/math/algtrig/ats2/normallesson.htm

More on Gaussians

http://en.wikipedia.org/wiki/File:Standard_deviation_diagram.svg
http://en.wikipedia.org/wiki/File:Standard_deviation_diagram.svg


Gaussian Noise: Python Code

• The function random.gauss(mu, sigma) returns a floating point 
number, distributed according to a Gaussian distribution with 
expected value (mean) μ and standard deviation σ. 

• We will use μ = 0, and a default value σ = 10. When added to 
pixel values, we will round the noise and make sure the 
outcome falls within 0…255.

>>> import random

>>> random.gauss(0,10)

0.36121514047571907

>>> random.gauss(0,10)

21.643048694527852

>>> lst = [round(random.gauss(0,10)) for i in range(20)]

>>> lst

[-8, 22, 12, 4, -1, 2, 11, 6, -16, -1, 4, -9, -3, 1, -5, -3, 5, 18, 19, 1]

>>> sorted(lst)

[-16, -9, -8, -5, -3, -3, -1, -1, 1, 1, 2, 4, 4, 5, 6, 11, 12, 18, 19, 22]

34

14 out of 20 (70%) 
between -10 and 10.  
19 out of 20 (95%) 
between -20 and 20



Adding Gaussian Noise: Python Code
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def add_gaussian_noise(img, sigma=10):

''' Generates Gaussian noise with mean 0 and SD sigma.

Adds indep. noise to pixel, keeping values in 0..255

מ'''

def g_noise_op(mat, x, y):

g_noise = round(random.gauss(0,sigma))

return min(max(mat[x,y] + g_noise, 0), 255)

return process_img(img, g_noise_op)



Adding Gaussian Noise: Example

36

Original image                                                      Gaussian noise (σ=10)

>>> img = Image.open("…").convert("L")

>>> img_gaussian_noise = add_gaussian_noise(img)

>>> tile(img, img_gaussian_noise).show()



Salt and Pepper Noise Model

37

A different type of noise is the so called salt and pepper noise:
extreme grey levels (white and black), or bursts, appearing at 
random and independently in a small number of pixels.



Adding Salt & Pepper Noise: Python Code
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def add_SP_noise(img, p=0.01):

''' Add salt and pepper noise: Each pixel is "hit" independently

with probability = p.

If hit, it has 50:50 chance of becoming white or black '''

def sp_noise_op(mat, x, y):

sp_noise = BLACK if random.random()<0.5 else WHITE # 50:50

r = random.random()

if r<p: #noise occurs with prob. p

return sp_noise

else:

return mat[x,y]

return process_img(img, sp_noise_op)



Adding Noise: Example

39

Original image                             Gaussian noise (σ=10)             Salt & pepper noise (p=0.01)

>>> img = Image.open("…").convert("L")

>>> img_gaussian_noise = add_gaussian_noise(img)

>>> img_sp_noise = add_SP_noise(img)

>>> tile(img, img_gaussian_noise, img_sp_noise).show()



Additional Noise Examples

40

original Gaussian noise (σ=20)             Salt & Pepper noise (p=0.01)



Local Approaches to Denoising
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• Local denoising: pixel at 𝑥, 𝑦 will change as a function of its 

surrounding pixels (called neighborhood, or environment)

• Local means uses average (mean) of neighborhood.

• a.k.a “smoothing filter”.

• Local medians uses median of neighborhood.

• a.k.a “median filter”.

• Which approach would you choose for which noise type?

255 254 254

254 255 253

253 253 252

255 254 254

254 0 253

253 253 252

noise

255 254 254

254 253 253

253 253 252

255 254 254

254 225 253

253 253 252



Denoising by Local Means: Motivation

• If the pixel 𝑥, 𝑦 resides in a smooth portion of the image, the light 
intensity in its neighborhood is about the same, so averaging will 
not change it significantly.

• In addition, it is known that averaging 𝑚 independent random 
variables decreases standard deviation σ to 𝜎/ 𝑚.

For example, in a 3x3 environment we get 𝜎/3.

• So in smooth areas, averaging preserves the signal component of 
the pixel, yet substantially decreases Gaussian noise contribution.

42



Denoising by Local Medians: Motivation

43

• Median is not sensitive to outliers as much as average. 

• If the pixel 𝑥, 𝑦 was hit by an extreme noise component (such as 
in S&P), local median will eliminate it, by replacing it with a 
value that is more representative to the environment



Neighborhood of a Pixel
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• Neighborhood (or environment) of a pixel (x,y) is the set of all pixels 

close to it. For example, a 3x3 square neighborhood:

• More generally, a rectangular neighborhood of dimensions (kx, ky) is a

(2kx+1)-by-(2ky+1) rectangle.

When kx = ky = 1 we get a 3x3 square.

























1,11,1,1

,1,,1

1,11,1,1

),(33
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yxyxyx

yxN x

kx kx
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Neighborhood
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• Even more generally, a neighborhood of a pixel can take any other shape:



…

Local Noise Reduction

• In local denoising (both local means and local medians), we 

visit each pixel and update its value (using some operator on 

its environment).

• Note that in the boundaries of the image the environment is 

smaller. We will use the same operators on the smaller 

environment.

• The updated pixel values are stored in a separate copy of the 

image (why?)

46



Local Operator - Code

def local_op(img, op, kx=1, ky=1):

w,h = img.size

mat = img.load()

new_img = img.copy()

new_mat = new_img.load()

for x in range(w):

for y in range(h):

# 4 corners, do not exceed image boundaries

left  = max(x-kx, 0)

up    = max(y-ky, 0)

right = min(x+kx, w-1)

down  = min(y+ky, h-1)

# flatten 2D neighborhood into 1D list        

neighbors_list = [mat[xx,yy] for xx in range(left, right+1) \

for yy in range(up, down+1)]

# apply op in list and assign result to pixel x,y

new_mat[x,y] = op(neighbors_list)

return new_img

The operator is applied 
on the neighboring pixels

Default: 3x3 square 
neighborhood

47

left,up

right,down



Local Means and Local Medians - Code
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def local_means(img, kx=1, ky=1):

mean = lambda lst: round(sum(lst)/len(lst)) 

return local_op(img, mean, kx, ky)

def local_medians(img, kx=1, ky=1):

median = lambda lst: sorted(lst)[len(lst)//2]

return local_op(img, median, kx, ky)



Putting Local Means/medians to the Test

We will explore different local denoising methods on-line 
in class, and display results back to back with original or 
each other.

Any conclusions? Which method is better? Where is it 
better?

Time (and energy) permitting, we will also explore 
variants with larger local windows (specifically, k=2).

49



Example: Cleaning S&P

50

original                                           Noisy

local means (3X3)

local medians (3X3)

1% S&P

• Local medians eliminates S&P 
but also eliminates fine details (לזרוק את התינוק עם המים)

• Local means blurs image



Local Approaches – Pros and Cons

51

• Local medians:

Not sensitive to extreme outliers (will reduce S&P noise)

Preserves sharpness of edges

Eliminates small, fine features

• Local means:

Preserves original signal in smooth areas, 

yet substantially decreases Gaussian noise contribution 

Reduces SD (𝜎)

In non-smooth areas blurs the image

Sensitive to extreme outliers

Three Gaussians, with σ = 0.5, 1, 2 (σ = 0.5 is the narrowest).



Time Complexity of Local Means and Local Medians

• Suppose the image dimensions are 𝑛-by-𝑚.

• The number of pixels we visit is 𝑂(𝑛 ∙ 𝑚). 

• For every such pixel, we either compute the average of the values in the 
window, or find their median.

• The number of pixels in a window is (2𝑘 + 1)2 = 4𝑘2 + 4𝑘 + 1 = 𝑂(𝑘2). 

– Computing averages takes 𝑂(𝑘2).

– For median, we employed sorting, taking 𝑂(𝑘2 𝑙𝑜𝑔𝑘2) = 𝑂(𝑘2 𝑙𝑜𝑔𝑘) steps 
(faster median finding algorithms do exist – wait for the data structures course)

52



Weighted Local Means

53

• Uniform averaging over the whole neighborhood, as discussed 

before, can be expressed as the matrix dot product:

• A common variant puts more weight close to the center, for 

example:

• Other weights matrices (a.k.a filters or masks) are used for  

various goals. 
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Non-Local Means
(for reference only)

54

• Windows centered at p and q are similar, but not to the 
one centered at r.

Gaussian noise                              Local means               Non-local means means

• Many natural images have a high degree of redundancy. Specifically, this 
means that for most small windows in the original image, the window has 
many similar windows in the same image.



Denoising by Non-Local Means 
(for reference only)

• The non-local (NL) means algorithm (A. Buades, B. Coll, and J. M. Morel, 
2005) heavily employs the notion of non-local, similar windows. Given a 
window centered at (x, y), we search for all windows in the image that are 
similar to it.

• In other words, we look for all (x’, y’) such that the "distance“ between the 
windows centered at x, y and x’, y’ is below some fixed threshold h.

• We compute the weighted average value of all those similar center pixels 
(including (x, y) itself), with higher weights assigned to windows that are 
more similar. The corrected value for (x, y) equals this average.

• The method is called non-local since the windows that effect the corrected 
value are not necessarily in close proximity to (x, y).

• Remark: This is a fairly simplified version of NL means. For reasons of 
efficiency, one usually scans only a subset of all possible windows.

55
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More on Digital Image Processing

• Common problems:
• Noise reduction (denoising) - removing noise from an image.
• Segmentation - partitioning a digital image into segments (e.g. background 

and foreground)
• Edge detection – detecting discontinuities in the image
• Image\video Compression – decrease volume in memory (usually lossy)
• Tracking – identifying relate objects in subsequent frames of a film
• Registration - transforming different images into one coordinate system (e.g. 

minor shifts in the camera position in subsequent frames
• Color correction.

• Typical applications:
• Machine vision
• Medical / biological image analysis
• Face detection
• Object recognition
• Augmented reality
• …57
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Resolution and Pixel Physical Size

Source: Wikipedia

• Resolution is the capability of the sensor to observe or measure 

the smallest object clearly with distinct boundaries. 

• Resolution depends upon the physical size of a pixel. 

Higher resolution = lower pixel size.

Increasing resolution
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• Digital images with high pixel resolution and bit depth take up 

lots of computer memory.

• This motivates the need for compressing images.

• During compression, some of the information in the image may 

be lost, in which case the compression is termed lossy. 

Otherwise, we call it lossless. 

• jpg, tiff, png, bmp, gif etc., differ by the type of compression 

applied to the original image. 

The bmp format is lossless, while the other formats are lossy

(tiff can be both, depending on some parameter settings).

Compression and Image Formats
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• jpg format partitions the image into squares of 8-by-8 pixels. 

• Most such squares will exhibit only gradual, moderate changes, especially in 

smooth areas of the image.

The Example of jpg

• These gradual changes 

can be well 

approximated by far 

fewer bits than the 

8·8·8 = 512 bits in the 

original representation. 

• A factor of 10 (or even 

more) saving in space 

can be achieved.

Human HT29 colon-cancer cells.
In the compressed image on the right, In the 
blue square all pixels are identical. In the green 
square, pixels only change from top to bottom. 
In the yellow square, pixels change in both 
directions.

 original image            highly compressed version 
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The Example of jpg
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Segmentation
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• The process of partitioning a digital image into multiple segments (sets of pixels, 

also known as superpixels). 

• The goal of segmentation is to simplify and/or change the representation of an 

image into something that is more meaningful and easier to analyze. 

• Image segmentation is critical for many subsequent processes, such as object 

recognition, shape analysis and tracking. It is typically used to locate objects and 

boundaries (lines, curves, etc.).

• Examples: locating tumors or anatomical structures in medical images; face 

detection; identifying objects in satellite images (roads, forests, crops, etc.).

Source:
http://www.sonycsl.co.jp/person/nielsen/applets.html

http://www.csl.sony.co.jp/person/nielsen/SRMb/
http://www.csl.sony.co.jp/person/nielsen/SRMb/
http://www.sonycsl.co.jp/person/nielsen/applets.html


Binary Segmentation by Thresholding
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• Simplest segmentation method: Apply a threshold to turn a gray-scale image into 

a binary image (BW).

• Assumes the image contains two classes of pixels denoted foreground and 

background, and these two classes have distinct, different light intensities.

• Generally, one can apply more than one threshold, creating >2 segments

Human HT29 colon-cancer cells
http://www.broadinstitute.org/bbbc/image_sets.html

Binary segmentation, threshold = 40



Picking a Threshold

Threshold = 20 Threshold = 40 Threshold = 60

• The key is to select the appropriate threshold

• Which one is the best here?
Original

• When the threshold is too low (20 in this case) 

areas in the image where cells are densely 

populated become bulbs.

• When it is too high (60) some cells are lost

(those whose brightness was low in the original 

image).

65



Binary Segmentation – another example

• Below are the results of binary segmentation with increasing thresholds (out_20 

for example uses threshold 20).
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Otsu Threshold

• A good threshold for segmentation:

– minimizes differences within each segment, and

– maximizes differences between segments.

• Otsu’s method finds such optimal threshold.

• Uses image histogram: grey level values distribution.

• x-axis – grey hues

• y-axis – number of pixels with a particular hue
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Otsu Threshold

• Otsu's method relies on the assumption that the foreground and the 

background of the image differ substantially in their brightness. 

• This assumption is not true in many cases, as in the Mona Lisa example.

• However, when this assumption holds, there are expected to be two peaks 

in the gray values of an image’s histogram (such image histograms are 

called bi-modal). 

• In this case the lowest mid-point between these two peaks would be a good 

choice for a threshold.

Foreground 
peak

Background 
peak

A good threshold68



Otsu Threshold

• When the difference between foreground and background are less sharp, the 

peaks may be partly overlapping: 

• When the image histogram is not bi-modal, Otsu's method will be inapplicable:

A good threshold
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Otsu's Formula

• Otsu threshold is the one that maximizes the var_between among all 

possible thresholds t.

• What is the effect of the difference between the means?

• What is the effect of the relative sizes of the background and foreground?

For every threshold  t denote:

back – number of background pixels (<= t)

fore – number of foreground pixels ( > t)

mean_back – mean value of the background pixels

mean_fore – mean value of the foreground pixels

var_between(t) = back * fore * (mean_back - mean_fore)2
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Edge Detection
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• Edge - sharp change in intensity between close pixels

• Usually captures much of the meaningful information in the image

images extracted using Sobel filter from:

http://micro.magnet.fsu.edu/primer/java/digitalimaging/russ/sobelfilter/index.html

http://micro.magnet.fsu.edu/primer/java/digitalimaging/russ/sobelfilter/index.html


Some non-CS issues
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From Wikipedia: Lenna or Lena is the 
name given to a standard test image 
widely used in the field of image 
processing since 1973. It is a picture of 
Lena Sderberg, shot by photographer 
Dwight Hooker, cropped from the 
centerfold of the November 1972 issue 
of Playboy magazine. Given the nature 
of the image and its source, several 
academics have criticized its continued 
use in scientific publications and higher 
education as both sexist and 
unprofessional.

The course staff joins this view. We do our best to avoid 
objectification of women in the course or the course material.


