
Extended Introduction to Computer Science
CS1001.py

Introduction to Digital Image
Representation and Processing

Module J

Instructors: Elhanan Borenstein, Michal Kleinbort
Teaching Assistants: Noam Parzanchevsky,

Asaf Cassel, Shaked Dovrat, Omri Porat

School of Computer Science
Tel-Aviv University

Srping Semester 2020-21
http://tau-cs1001-py.wikidot.com

* Slides based on a course designed by Prof. Benny Chor

http://tau-cs1001-py.wikidot.com/

And Now For Something Completely Different*,**

.זו הזדמנות לקפוץ חזרה על הרכבת, מי שהלכו קצת לאיבוד. שקף עם כותרת זו יישמש להדגשת המעבר בין חלקים שונים בקורס*

אנו מזמינים אתכם לשלוח לנו הצעות לתמונות שיופיעו על שקפים אלו**
2

Source: https://www.pinterest.ca/pin/202380576975644458/

https://www.pinterest.ca/pin/202380576975644458/

Lecture 24-25: Plan
• Introduction to Digital Image Representation:

• Greyscale and color images

• Bit depth, resolution

• Generating synthetic images

• Manipulating images

• Basics of Digital Image Processing

• Noise reduction:
• Noise models: Gaussian, Salt & Pepper

• De-noising with local means, local medians

• Additional examples, time permitting

3

communication

Brief "Historical" Technological Context

4

15 G

29 K 4.77 MHz

processors3.7 GHz

640 KB

8 GB

5 MB

RAM Hard Disk

500 GB

e-mail, simple text (128 ascii chars)
tons of data, inc. images (next slide)

- early 1980's
- today

speedtransistors

memory

A Brief Historical Context, Few Decades Later

5

• With the proliferation of

(1) larger and faster memory,

(2) strong, inexpensive processors,

(3) faster internet,

• Facebook stores about 350 million photos DAILY (4000/sec, reported 2019).

>250 billion photos where uploaded in total.

• The total number of photos+videos shared on Instagram is 40 billion (2010-2019).

• This dramatic technological progress is reflected by the following saying, often attributed

(apparently incorrectly) to Bill Gates, in 1981: "640KB ought to be enough for anybody".

it became possible to efficiently

(1) store,

(2) process, and

(3) transmit large digital images.

6

Digital Image Representation

• A digital image is commonly represented as a numeric 2D matrix.

• Each element 𝑀[𝑥, 𝑦] is called a pixel (picture element).

Pixel values convey information about the light intensity / color

at that location of the image.

pixel

(m-1,0)

pixel

(0,0)

.

pixel

(x,y)
.

.

pixel

(0,n-1)

n x m matrix

n rows

m columns

y

x M

6

RGB vs. Greyscale Images

7

(images from Wikipedia)

• For standard RGB* color images, 𝑀[𝑥, 𝑦] is a triplet of
values, representing the red, green, and blue components
of the light intensity at that pixel.

• For grey-level images, 𝑀[𝑥, 𝑦] is a non-negative number,
representing the light intensity at that pixel.

* RGB is one common representation of colors. CMY is another one

Some Fun with Color Representation
(for self exploration)

8

From Computer Science Field Guide:
• https://csfieldguide.org.nz/en/chapters/data-representation/images-and-colours/

https://csfieldguide.org.nz/en/chapters/data-representation/images-and-colours/

Grey Level format

• For the sake of simplicity, the remainder of this class will deal with
greyscale images only.
• However, what we will do is applicable to color images as well with minor

modifications.

• Real numbers expressing visual signal have to be discretized in
order to enable their representation on bounded precision digital
devices. A good quality greyscale photograph (that is, good by
human visual inspection) has 256 grey-level values per pixel.
• This requires 8 bits per pixel
• The value 0 represents black, while 255 represents white.
• For each pixel, the closer its value is to 0, the blacker it is. So 128 is considered a

mid-way grey.

9

10

• 256 grey level image: 0 = black, 255 = white

38, 26, 21, 36, 19, 28, 33, 44, 31, 112,

77, 83, 34, 168, 159, 48, 50, 14, 55, 211,

112, 137, 34, 101, 129, 62, 54, 40, 21, 86,

41, 46, 35, 19, 35, 52, 18, 57, 39, 123,

38, 16, 38, 67, 45, 21, 29, 59, 10, 130,

45, 43, 46, 51, 44, 39, 53, 31, 24, 64,

47, 30, 54, 45, 40, 46, 23, 26, 58, 40,

71, 57, 66, 63, 70, 84, 65, 62, 91, 49,

72, 55, 43, 57, 90, 111, 92, 73, 74, 56,

47, 45, 36, 78, 114, 113, 81, 54, 57, 44

Grey Level Images - Example

10

• Bit depth = number of bits per pixel:

• A human observer is able to discriminate between at most a few hundreds

shades of gray in optimal conditions (some estimations are lower,

depending also on the background, distance from the image etc.).

• We remark that in some applications, such as medical imaging, 4096 grey

levels (12 bits) are used. Higher bit depth images are sometimes aimed for

an automated analysis by a computer.

Image from:

http://micro.magnet.fsu.edu/

Image Bit Depth

1111

http://micro.magnet.fsu.edu/

12

BW / Grayscale / RGB - Summary

256 gray level image

(8 bpp)

"true color" image

(8+8+8 = 24 bpp)

Images from: http://www.csse.uwa.edu.au/~wongt/matlab.html

B&W

(1 bpp)

12

13

Python Imaging Library – PIL/PILLOW

• We will demonstrate topics with "real" images using the external

package PILLOW

• Installation instruction: open command prompt and type:
python -m pip install --upgrade pip

and then
python -m pip install --upgrade Pillow

(if this doesn’t work replace python with python3)

• Upon successful installation, the following line should not raise

an error:

>>> from PIL import Image

13

Basic Handling of Images using PIL

14

>>> from PIL import Image

Open image

>>> img = Image.open("./guess.bmp")

>>> img.size

(388, 541) #width, height

>>> img.show() # display

convert to 256 gray levels

so the code we write later will work

>>> img = img.convert('L')

get grey levels distribution (0-255)

>>> img.histogram()

Save as a new file

>>> img.save("./new_image", "bmp")

"./" = current folder
"../" = parent folder

Guessing Game

15

>>> img.size

(388, 541) #width, height

crop(min_x, min_y, max_x, max_y)

>>> region = img.crop((200,400,220,450))

>>> region.show()

200 220

400

450

387

|

540-

0

|
0-

The Matrix Representing an Image

16

>>> im = Image.open("./some_image.jpg").convert('L')

>>> mat = im.load()

>>> mat[0,0] #upper left corner

31

>>> mat[0,0] = 255

>>> mat[0,0]

255

>>> for x in range(20):

for y in range(20):

mat[x,y] = 255

>>> im.show()

• In order to change the image pixels we load the matrix

representing it

• Note: changes in the matrix WILL affect the image

Generating Synthetic Images

17

def create_img(w, h, op):

''' create a w X h image

assign pixel x,y with op(x,y) '''

img = Image.new(mode='L', size=(w,h), color=255)

mat = img.load()

for x in range(w):

for y in range(h):

mat[x,y] = op(x,y)

return img

Initial color
256 grayscale

format

Some Examples (Executions in Class)

18

Define constants to ease code readability

WHITE = 255

BLACK = 0

rnd_img = create_img(256, 256, lambda x,y: random.randint(0,255))

ver_lines = create_img(100, 300, lambda x,y: BLACK if x%10==0 else WHITE)

n=512

diagonal = create_img(n, n, lambda x,y: BLACK if x-y==0 else WHITE)

framed_diagonal = create_img(n, n, lambda x,y:

BLACK if x==0 or y==0 or \

x==n-1 or y==n-1 or \

x==y or x+y==n-1 \

else WHITE)

what = create_img(n, n, lambda x,y,c=1: (c*(x-y))%256)

circles = create_img(n, n, lambda x,y,c=1: (c*(x**2 + y**2)) % 256)

product = create_img(n, n, lambda x,y,c=1: (c*x*y) % 256)

Padlet for your own creative images

19

https://padlet.com/amirr6/euhqfxrey5f4emmu

• We urge you to play with the code, be as creative as you

can, or simply use trial and “error”.

https://padlet.com/amirr6/euhqfxrey5f4emmu

20

Manipulating Images

20

Manipulating Images

21

def process_img(img, op):

''' process image img (PIL.Image object) '''

w,h = img.size

mat = img.load()

new_img = img.copy()

new_mat = new_img.load()

for x in range(w):

for y in range(h):

new_mat[x,y] = op(mat, x, y)

return new_img

Some Examples (Executions in Class)

22

Define constants to ease code readability

WHITE = 255

BLACK = 0

img = Image.open("./some_image.jpg").convert('L')

white_square = \

process_img(img, lambda mat, x, y: WHITE if x<100 and y<100 else mat[x,y])

color_shifted = process_img(img, lambda mat, x, y, k=30: (mat[x,y]+k)%256)

negative = process_img(img, lambda mat, x, y: 256-mat[x,y])

w,h = img.size

upside_down = process_img(img, lambda mat, x, y: mat[x,h-y-1])

Tiling Multiple Images

23

def tile(*images):

''' Join several images horizontally for easy display.

Assume all images are of the same size

The * before the parameter means a variable number of parameters '''

w,h = images[0].size

n = len(images) #number of images

new = Image.new('L',(w*n+n,h), 255) #+n for some space between images

for i in range(len(images)):

new.paste(images[i], (w*i+i,0)) #+i for some space between images

return new

• A useful utility function that tiles several images together,

horizontally, assuming all images are of the same size:

Do you
understand this?

24

Noise Reduction

24

25

• A signal is any physical quantity, measurable through time or over

space.

• Examples: radio, telephone, radar, sound, light,…

• Signal processing: applying mathematical techniques for the

extraction, transformation and interpretation of signals.

• Signal processing may take two major flavors:

1) digital (discrete)

2) analog (continuous)

• Naturally, in this course we explore the first option

Signals

25

Digital Image Processing

26

• Image processing is any form of signal processing for which the
input is an image, such as a photograph or video frame.

• The output of image processing may be either an image or a set
of characteristics or parameters related to the image.

• Most image processing techniques involve treating the image as
a two-dimensional signal and applying standard signal processing
techniques to it .

(text and figure taken
from Wikipedia).

CCD (for reference only)

27 (image and text taken from http://www.axis.com/edu/axis/)

• CCD (charge coupled device): transforming light (photons) to
electrical voltage

• Each captor of the CCD is roughly a square area, in which the
number of incoming photons is being counted for a fixed time
period.

Noise

28

• Digital cameras (as well as traditional film cameras, microscopes, etc.) are

susceptible to noise formation.

• Noise sources include flecks of dust inside the camera, faulty sensors or

recording elements, the deviation of electrons from their original path (a

phenomenon called electron hiss), etc.

• A basic noise model:

At any pixel (x,y) the observed value S(x,y) equals the sum of the “true”

value I(x,y) plus some noise N(x,y).

S(x, y) = I(x, y) + N(x, y)

• The goal of noise reduction, or denoising algorithms, is to produce a new

image, which should be as close as possible to the “true” image I.

• Note that the values I(x,y) are not known to us! All we have is S(x, y).

Noise and Denoising Models

29

• Two very basic noise types we will see:

1. Gaussian noise

2. Salt and Pepper noise

• Two basic denoising approaches, based on local operators:

• Local means (operator = average)

• Local medians (operator = median)

Other, non-local methods, consider farther parts of the

image.

Assumptions on the Images

• We assume the image is piecewise smooth:

Most of the image's area consists of regions where light
intensity varies smoothly: if 𝑀[𝑥1, 𝑦1] and 𝑀[𝑥2, 𝑦2] are
neighbors, then they attain close enough values.

30

Gaussian Noise Model

• The noise ingredient 𝑁(𝑥, 𝑦) at each pixel is a random
variable.

• It is usually assumed that 𝑁(𝑥, 𝑦) is distributed normally and
independently of the noise at other pixels.

• So each pixel in the image is changed from its original value

by some (usually small) amount. Small deviations from the

original value are more likely than large ones.

31

Gaussians (for reference only)

32 Three Gaussians, with σ = 0.5, 1, 2 (σ = 0.5 is the narrowest).

• The probability density function

2 2/2

()
2

xe
G x




 





is called the Gaussian, or normal, distribution. It has mean 0 and
standard deviation (SD) σ. This is a continuous function, which is the
limit of the Binomial distribution, as the number of events tends to
infinity.

The Gaussian has the well known bell curve shape.

33

68% of the distribution lies within one
standard deviation of the mean. 95% of the
distribution lies within two standard deviations
of the mean. 99.7% of the distribution lies
within three standard deviations of the mean.
These percentages are known as the "empirical
rule".

http://www.regentsprep.org/regents/math/algtrig/ats2/normallesson.htm

More on Gaussians

http://en.wikipedia.org/wiki/File:Standard_deviation_diagram.svg
http://en.wikipedia.org/wiki/File:Standard_deviation_diagram.svg

Gaussian Noise: Python Code

• The function random.gauss(mu, sigma) returns a floating point
number, distributed according to a Gaussian distribution with
expected value (mean) μ and standard deviation σ.

• We will use μ = 0, and a default value σ = 10. When added to
pixel values, we will round the noise and make sure the
outcome falls within 0…255.

>>> import random

>>> random.gauss(0,10)

0.36121514047571907

>>> random.gauss(0,10)

21.643048694527852

>>> lst = [round(random.gauss(0,10)) for i in range(20)]

>>> lst

[-8, 22, 12, 4, -1, 2, 11, 6, -16, -1, 4, -9, -3, 1, -5, -3, 5, 18, 19, 1]

>>> sorted(lst)

[-16, -9, -8, -5, -3, -3, -1, -1, 1, 1, 2, 4, 4, 5, 6, 11, 12, 18, 19, 22]

34

14 out of 20 (70%)
between -10 and 10.
19 out of 20 (95%)
between -20 and 20

Adding Gaussian Noise: Python Code

35

def add_gaussian_noise(img, sigma=10):

''' Generates Gaussian noise with mean 0 and SD sigma.

Adds indep. noise to pixel, keeping values in 0..255

מ'''

def g_noise_op(mat, x, y):

g_noise = round(random.gauss(0,sigma))

return min(max(mat[x,y] + g_noise, 0), 255)

return process_img(img, g_noise_op)

Adding Gaussian Noise: Example

36

Original image Gaussian noise (σ=10)

>>> img = Image.open("…").convert("L")

>>> img_gaussian_noise = add_gaussian_noise(img)

>>> tile(img, img_gaussian_noise).show()

Salt and Pepper Noise Model

37

A different type of noise is the so called salt and pepper noise:
extreme grey levels (white and black), or bursts, appearing at
random and independently in a small number of pixels.

Adding Salt & Pepper Noise: Python Code

38

def add_SP_noise(img, p=0.01):

''' Add salt and pepper noise: Each pixel is "hit" independently

with probability = p.

If hit, it has 50:50 chance of becoming white or black '''

def sp_noise_op(mat, x, y):

sp_noise = BLACK if random.random()<0.5 else WHITE # 50:50

r = random.random()

if r<p: #noise occurs with prob. p

return sp_noise

else:

return mat[x,y]

return process_img(img, sp_noise_op)

Adding Noise: Example

39

Original image Gaussian noise (σ=10) Salt & pepper noise (p=0.01)

>>> img = Image.open("…").convert("L")

>>> img_gaussian_noise = add_gaussian_noise(img)

>>> img_sp_noise = add_SP_noise(img)

>>> tile(img, img_gaussian_noise, img_sp_noise).show()

Additional Noise Examples

40

original Gaussian noise (σ=20) Salt & Pepper noise (p=0.01)

Local Approaches to Denoising

41

• Local denoising: pixel at 𝑥, 𝑦 will change as a function of its

surrounding pixels (called neighborhood, or environment)

• Local means uses average (mean) of neighborhood.

• a.k.a “smoothing filter”.

• Local medians uses median of neighborhood.

• a.k.a “median filter”.

• Which approach would you choose for which noise type?

255 254 254

254 255 253

253 253 252

255 254 254

254 0 253

253 253 252

noise

255 254 254

254 253 253

253 253 252

255 254 254

254 225 253

253 253 252

Denoising by Local Means: Motivation

• If the pixel 𝑥, 𝑦 resides in a smooth portion of the image, the light
intensity in its neighborhood is about the same, so averaging will
not change it significantly.

• In addition, it is known that averaging 𝑚 independent random
variables decreases standard deviation σ to 𝜎/ 𝑚.

For example, in a 3x3 environment we get 𝜎/3.

• So in smooth areas, averaging preserves the signal component of
the pixel, yet substantially decreases Gaussian noise contribution.

42

Denoising by Local Medians: Motivation

43

• Median is not sensitive to outliers as much as average.

• If the pixel 𝑥, 𝑦 was hit by an extreme noise component (such as
in S&P), local median will eliminate it, by replacing it with a
value that is more representative to the environment

Neighborhood of a Pixel

44

• Neighborhood (or environment) of a pixel (x,y) is the set of all pixels

close to it. For example, a 3x3 square neighborhood:

• More generally, a rectangular neighborhood of dimensions (kx, ky) is a

(2kx+1)-by-(2ky+1) rectangle.

When kx = ky = 1 we get a 3x3 square.

























1,11,1,1

,1,,1

1,11,1,1

),(33

yxyxyx

yxyxyx

yxyxyx

yxN x

kx kx

ky

ky

Neighborhood

45

• Even more generally, a neighborhood of a pixel can take any other shape:

…

Local Noise Reduction

• In local denoising (both local means and local medians), we

visit each pixel and update its value (using some operator on

its environment).

• Note that in the boundaries of the image the environment is

smaller. We will use the same operators on the smaller

environment.

• The updated pixel values are stored in a separate copy of the

image (why?)

46

Local Operator - Code

def local_op(img, op, kx=1, ky=1):

w,h = img.size

mat = img.load()

new_img = img.copy()

new_mat = new_img.load()

for x in range(w):

for y in range(h):

4 corners, do not exceed image boundaries

left = max(x-kx, 0)

up = max(y-ky, 0)

right = min(x+kx, w-1)

down = min(y+ky, h-1)

flatten 2D neighborhood into 1D list

neighbors_list = [mat[xx,yy] for xx in range(left, right+1) \

for yy in range(up, down+1)]

apply op in list and assign result to pixel x,y

new_mat[x,y] = op(neighbors_list)

return new_img

The operator is applied
on the neighboring pixels

Default: 3x3 square
neighborhood

47

left,up

right,down

Local Means and Local Medians - Code

48

def local_means(img, kx=1, ky=1):

mean = lambda lst: round(sum(lst)/len(lst))

return local_op(img, mean, kx, ky)

def local_medians(img, kx=1, ky=1):

median = lambda lst: sorted(lst)[len(lst)//2]

return local_op(img, median, kx, ky)

Putting Local Means/medians to the Test

We will explore different local denoising methods on-line
in class, and display results back to back with original or
each other.

Any conclusions? Which method is better? Where is it
better?

Time (and energy) permitting, we will also explore
variants with larger local windows (specifically, k=2).

49

Example: Cleaning S&P

50

original Noisy

local means (3X3)

local medians (3X3)

1% S&P

• Local medians eliminates S&P
but also eliminates fine details (לזרוק את התינוק עם המים)

• Local means blurs image

Local Approaches – Pros and Cons

51

• Local medians:

Not sensitive to extreme outliers (will reduce S&P noise)

Preserves sharpness of edges

Eliminates small, fine features

• Local means:

Preserves original signal in smooth areas,

yet substantially decreases Gaussian noise contribution

Reduces SD (𝜎)

In non-smooth areas blurs the image

Sensitive to extreme outliers

Three Gaussians, with σ = 0.5, 1, 2 (σ = 0.5 is the narrowest).

Time Complexity of Local Means and Local Medians

• Suppose the image dimensions are 𝑛-by-𝑚.

• The number of pixels we visit is 𝑂(𝑛 ∙ 𝑚).

• For every such pixel, we either compute the average of the values in the
window, or find their median.

• The number of pixels in a window is (2𝑘 + 1)2 = 4𝑘2 + 4𝑘 + 1 = 𝑂(𝑘2).

– Computing averages takes 𝑂(𝑘2).

– For median, we employed sorting, taking 𝑂(𝑘2 𝑙𝑜𝑔𝑘2) = 𝑂(𝑘2 𝑙𝑜𝑔𝑘) steps
(faster median finding algorithms do exist – wait for the data structures course)

52

Weighted Local Means

53

• Uniform averaging over the whole neighborhood, as discussed

before, can be expressed as the matrix dot product:

• A common variant puts more weight close to the center, for

example:

• Other weights matrices (a.k.a filters or masks) are used for

various goals.







































9/19/19/1

9/19/19/1

9/19/19/1

1,11,1,1

,1,,1

1,11,1,1

yxyxyx

yxyxyx

yxyxyx

















12/112/112/1

12/13/112/1

12/112/112/1

Non-Local Means
(for reference only)

54

• Windows centered at p and q are similar, but not to the
one centered at r.

Gaussian noise Local means Non-local means means

• Many natural images have a high degree of redundancy. Specifically, this
means that for most small windows in the original image, the window has
many similar windows in the same image.

Denoising by Non-Local Means
(for reference only)

• The non-local (NL) means algorithm (A. Buades, B. Coll, and J. M. Morel,
2005) heavily employs the notion of non-local, similar windows. Given a
window centered at (x, y), we search for all windows in the image that are
similar to it.

• In other words, we look for all (x’, y’) such that the "distance“ between the
windows centered at x, y and x’, y’ is below some fixed threshold h.

• We compute the weighted average value of all those similar center pixels
(including (x, y) itself), with higher weights assigned to windows that are
more similar. The corrected value for (x, y) equals this average.

• The method is called non-local since the windows that effect the corrected
value are not necessarily in close proximity to (x, y).

• Remark: This is a fairly simplified version of NL means. For reasons of
efficiency, one usually scans only a subset of all possible windows.

55

57

More on Digital Image Processing

• Common problems:
• Noise reduction (denoising) - removing noise from an image.
• Segmentation - partitioning a digital image into segments (e.g. background

and foreground)
• Edge detection – detecting discontinuities in the image
• Image\video Compression – decrease volume in memory (usually lossy)
• Tracking – identifying relate objects in subsequent frames of a film
• Registration - transforming different images into one coordinate system (e.g.

minor shifts in the camera position in subsequent frames
• Color correction.

• Typical applications:
• Machine vision
• Medical / biological image analysis
• Face detection
• Object recognition
• Augmented reality
• …57

58

Resolution and Pixel Physical Size

Source: Wikipedia

• Resolution is the capability of the sensor to observe or measure

the smallest object clearly with distinct boundaries.

• Resolution depends upon the physical size of a pixel.

Higher resolution = lower pixel size.

Increasing resolution

58

• Digital images with high pixel resolution and bit depth take up

lots of computer memory.

• This motivates the need for compressing images.

• During compression, some of the information in the image may

be lost, in which case the compression is termed lossy.

Otherwise, we call it lossless.

• jpg, tiff, png, bmp, gif etc., differ by the type of compression

applied to the original image.

The bmp format is lossless, while the other formats are lossy

(tiff can be both, depending on some parameter settings).

Compression and Image Formats

59

• jpg format partitions the image into squares of 8-by-8 pixels.

• Most such squares will exhibit only gradual, moderate changes, especially in

smooth areas of the image.

The Example of jpg

• These gradual changes

can be well

approximated by far

fewer bits than the

8·8·8 = 512 bits in the

original representation.

• A factor of 10 (or even

more) saving in space

can be achieved.

Human HT29 colon-cancer cells.
In the compressed image on the right, In the
blue square all pixels are identical. In the green
square, pixels only change from top to bottom.
In the yellow square, pixels change in both
directions.

 original image highly compressed version

60

The Example of jpg

61

Segmentation

63

• The process of partitioning a digital image into multiple segments (sets of pixels,

also known as superpixels).

• The goal of segmentation is to simplify and/or change the representation of an

image into something that is more meaningful and easier to analyze.

• Image segmentation is critical for many subsequent processes, such as object

recognition, shape analysis and tracking. It is typically used to locate objects and

boundaries (lines, curves, etc.).

• Examples: locating tumors or anatomical structures in medical images; face

detection; identifying objects in satellite images (roads, forests, crops, etc.).

Source:
http://www.sonycsl.co.jp/person/nielsen/applets.html

http://www.csl.sony.co.jp/person/nielsen/SRMb/
http://www.csl.sony.co.jp/person/nielsen/SRMb/
http://www.sonycsl.co.jp/person/nielsen/applets.html

Binary Segmentation by Thresholding

64

• Simplest segmentation method: Apply a threshold to turn a gray-scale image into

a binary image (BW).

• Assumes the image contains two classes of pixels denoted foreground and

background, and these two classes have distinct, different light intensities.

• Generally, one can apply more than one threshold, creating >2 segments

Human HT29 colon-cancer cells
http://www.broadinstitute.org/bbbc/image_sets.html

Binary segmentation, threshold = 40

Picking a Threshold

Threshold = 20 Threshold = 40 Threshold = 60

• The key is to select the appropriate threshold

• Which one is the best here?
Original

• When the threshold is too low (20 in this case)

areas in the image where cells are densely

populated become bulbs.

• When it is too high (60) some cells are lost

(those whose brightness was low in the original

image).

65

Binary Segmentation – another example

• Below are the results of binary segmentation with increasing thresholds (out_20

for example uses threshold 20).

66

Otsu Threshold

• A good threshold for segmentation:

– minimizes differences within each segment, and

– maximizes differences between segments.

• Otsu’s method finds such optimal threshold.

• Uses image histogram: grey level values distribution.

• x-axis – grey hues

• y-axis – number of pixels with a particular hue

67

Otsu Threshold

• Otsu's method relies on the assumption that the foreground and the

background of the image differ substantially in their brightness.

• This assumption is not true in many cases, as in the Mona Lisa example.

• However, when this assumption holds, there are expected to be two peaks

in the gray values of an image’s histogram (such image histograms are

called bi-modal).

• In this case the lowest mid-point between these two peaks would be a good

choice for a threshold.

Foreground
peak

Background
peak

A good threshold68

Otsu Threshold

• When the difference between foreground and background are less sharp, the

peaks may be partly overlapping:

• When the image histogram is not bi-modal, Otsu's method will be inapplicable:

A good threshold

69

Otsu's Formula

• Otsu threshold is the one that maximizes the var_between among all

possible thresholds t.

• What is the effect of the difference between the means?

• What is the effect of the relative sizes of the background and foreground?

For every threshold t denote:

back – number of background pixels (<= t)

fore – number of foreground pixels (> t)

mean_back – mean value of the background pixels

mean_fore – mean value of the foreground pixels

var_between(t) = back * fore * (mean_back - mean_fore)2

70

Edge Detection

71

• Edge - sharp change in intensity between close pixels

• Usually captures much of the meaningful information in the image

images extracted using Sobel filter from:

http://micro.magnet.fsu.edu/primer/java/digitalimaging/russ/sobelfilter/index.html

http://micro.magnet.fsu.edu/primer/java/digitalimaging/russ/sobelfilter/index.html

Some non-CS issues

72

From Wikipedia: Lenna or Lena is the
name given to a standard test image
widely used in the field of image
processing since 1973. It is a picture of
Lena Sderberg, shot by photographer
Dwight Hooker, cropped from the
centerfold of the November 1972 issue
of Playboy magazine. Given the nature
of the image and its source, several
academics have criticized its continued
use in scientific publications and higher
education as both sexist and
unprofessional.

The course staff joins this view. We do our best to avoid
objectification of women in the course or the course material.

