
Extended Introduction to Computer Science

CS1001.py

Module H (Text): Ziv–Lempel Compression

Instructors: Elhanan Borenstein, Michal Kleinbort
Teaching Assistants: Noam Parzanchevsky, Asaf Cassel,

Shaked Dovrat, Omri Porat

School of Computer Science
Tel-Aviv University

Spring Semester 20-21
http://tau-cs1001-py.wikidot.com

* Slides based on a course designed by Prof. Benny Chor

http://tau-cs1001-py.wikidot.com/

2 / 41

Ziv–Lempel Compression: Overview

► Lossless text compression

► Exploits text repetitions (as opposed to Huffman).

► Basis of zip, winzip, Tar, and numerous other commercial
compression packages.

Ziv–Lempel Compression: History

Proposed by Yaacov Ziv and Abraham Lempel∗ in a seminal 1977
paper (“A Universal Algorithm for Sequential Data Compression”,
IEEE transactions on Information Theory).

Their algorithm went through several modifications and adjustments.
The one used most these days is the modification by Terry Welch, in
1984, and known today as LZW compression.

Unlike Huffman, all variants of LZ compression do not assume any
knowledge of character distribution. The algorithm finds
redundancies in texts using a different strategy.

We will go through this important compression algorithm in detail.

∗who later became professors at (correspondingly) the EE and CS faculties,
Technion.

3 / 41

4 / 41

Huffman vs. Ziv Lempel: Fundamental Difference

Huffman compression computes character frequencies based on some
standard corpus. These frequencies are used to generate encodings
for single characters, which are subsequently employed to compress
and decompress any future text.

The statistics (or derived dictionaries) are either shared by both sides
before communication starts, or have to be explicitly transmitted as
part of the communication.

By way of contrast, Ziv-Lempel compression is adaptive: there is no
precomputed statistics. The basic redundancies employed here are
repetitions in the text, which are quite frequent in human generated
(and other forms of) texts.

There is no need here to share any data before transmission
commences.

5 / 41

Exploiting Text Repetitions

The basic idea of the Ziv-Lempel algorithm is to “take advantage” of
repetitions in order to produce a shorter encoding of the text.

► Let T be an n character long text. In Python’s spirit, we will
think of it as T[0:n].

► Suppose we have a k long repetition (k > 0) at position j and at
position p = j + m (m > 0), namely:
T[j:j+k] = T[p:p+k].

Basic Idea: Instead of encoding T[p:p+k] character by character, we
can represent it by identifying the backwards offset m to the starting
point of the first occurrence, j, and the length of the repetition, k.

6 / 41

Example

We will see the implementation details later, but let’s run some
examples:

???

7 / 41

Example (cont)

We will see the implementation details later, but let’s run some
examples:

Important: the repetition encoded segment T[j:j+k] may go beyond
T[p] (into the “future”).

8 / 41

Example (cont. cont.)

We will see the implementation details later, but let’s run some
examples:

When decompressing pairs such as [3,6] we re-generate the text
based on a prefix of itself!

9 / 41

How to Represent Repetitions

Ziv-Lempel advocates looking for repetitions in only a bounded part
of the text. The standard recommendation is to consider only a
”window” of the W = 212 − 1 = 4095 most recent characters.

Can you think of the pros and cons of this choice?

10 / 41

How to Represent Repetitions (cont.)

This choice has the disadvantage that repeats ”below the horizon”,
i.e. earlier than 4095 most recent characters, will be ignored.

It has the advantage that 1 ≤ m ≤ W can be represented using a
small, fixed number of bits (12 bits for 4095 size window).
Another advantage is that as we compress the text we only need to
keep the last 4095 characters, rather than the whole text seen so far
(think of generators in this context).

Note: if we choose not to limit the offset m then we’d need O(logn)
bits to represent m, where n is the length of the whole text we want
to compress. This is because the offset can be as large as O(n).
Another option is to use j iteself (the starting point of the earlier
repetition), which suffers from the same disadvantages.

11 / 41

Representing k (repetition length)

We have already mentioned that the size of the window, W , is
typically restricted to 4,096-1=4,095. Thus the offset, m, can be
represented by a fixed length, 12 bits number.

For similar reasons, the length of the match, k is also limited: 1 ≤
k ≤ L, typically L = 25 − 1 = 31. So the length, k, can be
represented by a fixed length, 5 bits number.

12 / 41

High Level LZW Compression

Instead of producing a string consisting of bits right away, we
decompose this task into two: An intermediate output (in an
intermediate format), and then a final output (bits). The
intermediate format will be easier to understand (and to debug, if
needed).

So at the first stage, we produce a list, whose elements are either
single characters, or pairs m, k, where m is an offset, and k is a
match length.

Later at the second stage, we will ”translate” both single
uncompressed characters and pairs m, k to binary.

13 / 41

Pseudo-Code for LZW Compression (1st stage)

To encode the string T[0:n], using a ”sliding window” of size W and
maximal repetition of size L:

1. Loop over positions in T, starting with the index p=0

2. While the text was not exhausted

a. Find longest match for T[p...] starting at T[p-m...] for any
1 ≤ m ≤ W .

b. Suppose this match is of length k: T[p:p+k] == T[p-m:p-m+k]
c. if k ≤ 1 (no match found or match is a single char):

I. Output the single character T[p]
II. Move on to next location in text: p = p+1.

d. else: (k ≥ 2)

I. Output the pair of integers [m, k].
II. Update the text location: p = p+k.

14 / 41

High Level LZW Compression: Improvement

At the second stage we will transform the intermediate format to the
final compressed binary string.

Remember:

?

15 / 41

High Level LZW Compression: Improvement (cont.)

At the second stage we will transform the intermediate format to the
final compressed binary string.

Remember:

To distinguish between a single character and an (m,k) entry, a ’0’ will
be placed before a single ASCII character, while a ’1’ will be placed
before an (m,k) entry.

?

16 / 41

High Level LZW Compression: Improvement (cont. cont.)

Let’s do some arithmetics: we need 12+5 bits for an (m,k) entry in the
intermediate format. But in the binary representation we need an
extra bit as mentioned above. So we need a total of 1+12+5=18 bits
for an (m,k) entry. A single character in ASCII requires 7 bits, and with
the extra bit mentioned above we have 1+7 = 8 bits per
uncompressed character. Thus, for 2 uncompressed characters we
need 16 bits, which is smaller than 18!

Conclusion: Recording repetitions of length 2 is wasteful in terms of
bits used vs. bits saved. Thus we will restrict k > 2.

17 / 41

Pseudo-Code for LZW Compression (1st stage improved)

To encode the string T[0:n], using a ”sliding window” of size W and
maximal repetition of size L:

1. Loop over positions in T, starting with the index p=0

2. While the text was not exhausted

a. Find longest match for T[p...] starting at T[p-m...] for any
1 ≤ m ≤ W .

b. Suppose this match is of length k: T[p:p+k] == T[p-m:p-m+k]
c. if k ≤ 2 (no match found or match is ≤ two chars):

I. Output the single character T[p]
II. Move on to next location in text: p = p+1.

d. else: (k ≥ 3)

I. Output the pair of integers [m, k].
II. Update the text location: p = p+k.

18 / 41

LZW Compression: Implementation

Finding a maximum match quickly is also a major factor determining
the time efficiency of the compression algorithm. Hashing and other
data structures allow to speed up the computation.

We present a simple iterative procedure for the task, which does not
employ any sophisticated data structures. Its performance (both in
terms of running time, will not be as good as the optimized,
commercial packages. But unlike the packages, you will fully
understand what goes on here.

19 / 41

Maximum Match

Our first task is locating the maximum matches.

The function maxmatch returns the offset and the length of a
maximum length match T[p:p+k]==T[p-m:p-m+k] within
prescribed window size backwards and maximum match size.

The function maxmatch(T,p,W,L) has four arguments:

► T, the text (a string)

► p, an index within the text

► W, a size of window within which matchs are sought

► L, the maximal length of a match that is sought

The last two arguments will have the default values 212 − 1, 25 − 1,
respectively.

20/ 41

Maximum Match: Python Code

21 / 41

Maximum Match: A Few Experiments

22 / 41

Maximum Match: A Few Experiments

23 / 41

Next: From Text to Intermediate Format

LZW_compress produces a list, whose elements are either single
characters (in case of a repeat of length smaller than 3), or pairs (m,
k), where m is an offset, and k is a match length. The default bounds
on thesenumbers are 1 ≤ m < 212 (12 bits to describe) and 2 ≤ k < 25 (5
bits to describe).

The LZW compression algorithm scans the input text, character by
character. At each position, p, it invokes maxmatch(text,p). If the
returned match value, k, is between 0-2, the current character,
text[p], is appended to the list. Otherwise, the pair [m,k] is appended.

If a match (m,k) was identified, we advance the location in the text to
be examined next from the current p to p+k (why?).

24 / 41

Intermediate Format LZW Compression: Python Code

25 / 41

Intermediate Format LZW DeCompression: Python Code

Of course, compression with no decompression is of little use.

26 / 41

Intermediate Format LZW Compression and

DeCompression: A Small Example

As demonstrated above, compression could pass the current location:
That is, we can have j+k-1 > p in
T[j:j+k] = T[p:p+k].

27 / 41

Intermediate Format LZW Compression and

DeCompression: Another Small Example

28 / 41

But in the End It’s Only Bits Out There

Q1: How many bits are needed for the compressed binary string?

Q2: And how many are needed without any compression? For
simplicity, assume we deal with only ASCII chars of 7 bits each.

29/ 41

There and Back Again

Let us complete our LZW tour by going from the intermediate format
to the compressed string of bits, and vice versa.

Don’t forget to import math for the logarithm.
30 / 41

From Intermediate Format to Compressed Binary String

To distinguish between a single character and an [m,k] entry, a ’0’ will
be placed before a single ascii character, while a ’1’ will be placed
before an [m,k] entry.

Don’t forget to import math for the logarithm.
31 / 41

From Compressed Binary String to Intermediate Format

32 / 41

The Whole Compress/Decompress Cycle: A Small Example

33 / 41

The Whole Compress/Decompress Cycle: Another Example

34 / 41

Time Complexity of the LZW compression

Finding the maximal match for possibly each position is the major
consumer of time in our compression procedure.

For any location in the text, p, this function takes up to W · L many
operations in the worst case.

For the default parameters, this is 212 · 25 = 217 per one position, p.
This is a rather pessimistic worst case estimate, as it assumes that for
every offset we go all the way to length 31 and do not find a mismatch
earlier.

Running maxmatch(T,p) over all text locations will thus take up to
217 times the length of T operations.
This is again a rather pessimistic worst case estimate, as some
positions may be skipped over due to repetitions found.

35 / 41

Time Complexity of the LZW Compression (cont.)

Let us assume that one half of the text is skipped over due to
repetitions found (a reasonable assumption for human generated
text) . If n denotes the text length, compression will require 216 · n
operations.

Although this is O(n), the ”hidden” constant is very large.

Anyhow, we mentioned already that our implementation is far from
being time efficient.

Next, we will test our code for much longer srings than in the toy
examples we saw: the New-York Times magazine, and the proteome
(set of proteins) of the notorious cholera bacteria.

36 / 41

Additional Examples (time permitting)

For convenience, we “package” together some relevant functions:

37 / 41

Additional Examples: New-York Times

Compression ratio is about 37% of original text!

38 / 41

There and Back Again: The NY Times Test: Huffman

It seems that human generated text is more amenable to Ziv-Lempel
compression than to Huffman compression.

39 / 41

Compressing the Cholera Proteome

Compression took about 43 minutes!!
The compression ratio is 79%.

40 / 41

Cholera Compression Ratio: Ziv-Lempel vs. Huffman

We saw that the Ziv-Lempel algorithm compresses the Cholera
proteome to 79% of its original size. The Cholera proteome is (to the
best of our knowledge) not human made. So some properties
common in human generated text, like repetitions, are not too
frequent. Thus the Ziv-Lempel compression ratio is not very
impressive here.
However, most of the cholera proteome text is over the amino acid
alphabet, which has just 20 characters. The vast majority of the
characters in the text can thus be encoded using under 5 bits on
average. This indicates that maybe Huffman could do better here.

41 / 41

Compression: Concluding Remarks

There are additional variants of text compression/decompression
algorithms, many of which use combinations of Ziv-Lempel and
Huffman encoding. In many cases, it is possible to attain higher
compression by employing larger blocks or longer windows.

Our compression algorithm as described so far is greedy: Any repeat
of length 3 or more is reported and employed right away. Sometimes
this is not optimal: We could have an [m1, k1] repeat in position p,
and an [m2, k2] repeat in position p+1 or p+2, with k1 « k2. Thus a
non-greedy algorithm may result in improved compression.

All such improvements would cost more time but produce better
compression. In some applications, such tradeoff is well justified.

Compression of gray scale and color images, as well as of documents
with a mixture of images and text, uses different approaches. These
are based on signal processing techniques, which are often lossy, and
are out of scope for our course.

Improvements to LZW: gzip (for reference only)

The gzip variant of LZW was created and distributed (in 1993) by
the Gnu† Free Software Foundation. It contains a number of
improvements that make compression more efficient time wise, and
also achieves a higher compression ratio.

As we saw, finding the offset, match pairs [m,k] is the main
computational bottleneck in the algorithm. To speed it up, gzip
hashes triplets of consecutive characters. When we encounter a new
location, p, we look up the entry in the hash table with the three
character key T[p]T[p+1]T[p+2]. The value of this key is a set of
earlier indices with the same key. We use only these (typically very
few) indices to try and extend the match.

†The name “GNU” is a recursive acronym for “GNU’s Not Unix!”; it is pronounced
g-noo, as one syllable with no vowel sound between the g and the n.

42 / 43

http://www.gnu.org/pronunciation/pronunciation.html

Improvements to LZW: gzip (cont.)

To prevent the hash tables from growing too much, the text is
chopped to blocks, typically of 64,000 characters. Each block is
treated separately, and we initialize the hash table for each.

Hashing improves the running time substantially. To improve
compression, gzip further employs Huffman code‡. This is used both
for the characters and for the offsets (typically close offsets are more
frequent than far away ones) and the match lengths.

For every block, the decoding algorithm computes the corresponding
Huffman code for all three components (characters, offsets,
matches). This code is not known at the receiving end, so the small
table descrbing it is sent as part of the compressed text.

‡such combination is sometime termed the Deflate compression algorithm.
43 / 43

