
Extended Introduction to Computer Science
CS1001.py

First Acquaintance with Python

* Slides based on a course designed by Prof. Benny Chor

Chapter A

Amir Rubinstein, Michal Kleinbort

School of Computer Science
Tel-Aviv University

Fall Semester 2023-4
http://tau-cs1001-py.wikidot.com

http://tau-cs1001-py.wikidot.com/

Lecture Goals

• Acquaintance with IDLE

– Our programming environment for this semester

• First acquaintance with Python

– Our programming language for this semester
• Types of data: str, int, float

• Basic operations

• Variables

• Conditionals

2

Programming Languages Basics

• Informally, a computer program is a text containing a
sequence of instructions that can be “understood” and
executed by a computer
– a more formal definition please?
– wait for the computational models course (2nd yr)

• In some sense, a computer program resembles
a recipe.

– Pots, ovens, and even the final consumer of food,
are typically quite tolerant.
Putting a bit more sugar or a little less nutmeg will hardly be felt.

– By way of contrast, an extra parenthesis, or a missing colon or
quotation marks, will most likely cause a program to crash.

3

Online Demo: ID Control Digit

• Let’s start right off with an example: computing the
control digit of an Israeli ID number.

– You are NOT expected to understand the code right now, but you will
be able to, within a week!

– We may encounter this example again towards the end of the course
(error detection codes)

4

Writing Programs
• Getting a program to work as planned is an interesting, and

often challenging process. It can be frustrating as well.

• Planning what your program should do, and how it is going
to do it, is crucial.

– It is very tempting to skip such planning and go straight to
writing lines of code.

– When things go wrong, it is even more tempting to change a
line of the code and hope this will solve the problem.

– We strongly advise you not to skip the planning stage (both
before and during the process).

5

High Level →Machine Code

• The high level language needs to be transformed to
the machine code (by yet another computer program).

6

• Most programs these days are
written in high level programming
languages (Python, C, Java, C++, Fortran,

R, and many many more)

• These are formal languages with a
strict syntax, yet are fairly
comprehensible to experienced
programmers.

• By way of contrast,
the computer
hardware
“understands” a
lower level machine
code.

High Level →Machine Code

(figure taken from TAU’s old intro to CS in Scheme course)7

High Level →Machine Code

• The transformation from high level to machine level
languages comes in two flavors:

– by interpreters (as in Python) and

– by compilers (as in C)

• More details in the appendix

8

IDLE

• An integrated development environment (IDE) is a software
that provides facilities to computer programmers:
– writing programs

– executing programs

– debugging programs

• Python has various IDEs: IDLE, PyCharm, Eclipse, Notepad++,…

• We will use IDLE, one of the simplest programming
environments for Python, suitable for beginners.
– For large industrial projects, IDLE may be too simple. But it is

completely adequate for the rather simple programs we (and you) will
write in this course.

9

https://en.wikipedia.org/wiki/IDLE

IDLE

• There are two Python versions: 2 and 3. We use 3

– Python 3 is not fully compatible with Python 2.

– If you use Python 2, your programs will most likely crash
in our HW execution tests. This will have negative effects
on the “wet” part of your homework assignments’ grades,
so is best avoided.

• Go to www.python.org

– Download the latest Python 3 interpreter

– More instructions on the course website

10

http://www.python.org/

Interactive (shell) mode vs. Script mode

11

• When we open IDLE we get the shell mode,

also called Interactive mode .

This is a "ping-pong" mode.

we can run a single command at a time.

Very convenient for short computations.

• Script mode enables writing the whole program first, saving it in a .py

file, and only then running it line by line.

To work in script mode:

1a. File  New File OR

1b. right click on an existing .py file  edit

2. Run  Run Module (or F5)

Also see:
https://www.tutorialsteacher.com/python/python-idle

https://www.tutorialsteacher.com/python/python-idle

12

The first few classes introduce Python. Some of you will probably feel like this:

Or, desirably, like this:

Comic Relief *

אלו לאורך הסמסטרהצעות לתמונות שיופיעו על שקפים לי אתכם לשלוח אני מזמין *

Python Programming Basics:
“Gidday, Mate”

• The first line of code taught in all programming languages is a print
command of a greeting. We do not dare to deviate from this
inspirational tradition, but will add an Aussie touch to it.

>>> print("Gidday, mate!")

Gidday, mate!

• The text to the right of the prompt, >>>, is the “command” to the
Python interpreter. The text in the next line is the result of the
command

• print is a built-in Python function (colored purple by IDLE). We will
learn about functions later

• The text to be printed appears between " ", colored green.
• We will also see later that Python has a collection of reserved words,

with fixed meaning, usually displayed in orange

13

https://en.wikipedia.org/wiki/Aussie

Read, eval, print

An interaction with the interpreter has 3 steps

• Read: the interpreter reads the sequence of characters we
type following the prompt (it converts this sequence to some
internal form)

• Eval: the interpreter evaluates (computes) the code that was
read, and produces a result (and perhaps additional effects)

• Print: the interpreter prints the result as a sequence of
characters (converts internal form to text), then prints the
prompt for the next interaction.

14

You Will Get Stuck!
I’m sorry to say so

but, sadly, it’s true

that Bang-ups

and Hang-ups

can happen to you.

You can get all hung up

in a prickle-ly perch.

And your gang will fly on.

You’ll be left in a Lurch.

You’ll come down from the Lurch

with an unpleasant bump.

And the chances are, then,

that you’ll be in a Slump.

And when you’re in a Slump,

you’re not in for much fun.

Un-slumping yourself

is not easily done.
15

What to Do When You Get Stuck?

1) Python interpreter has built-in help for all built-in and library
functions/methods/classes (see next slide)

Admittedly, help response may be somewhat cryptic at times.

2) Check Python documentation at http://docs.python.org/py3k/.

3) Use your favorite search engine. With high probability, any
problem you ran into was already tackled by someone who
documented the solution on the web.

4) The course forum may come in handy.

16

http://docs.python.org/py3k/

Help example

>>> help(print)
Help on built-in function print in module builtins:

print(...)
print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)

Prints the values to a stream, or to sys.stdout by default.
Optional keyword arguments:
file: a file-like object (stream); defaults to the current sys.stdout.
sep: string inserted between values, default a space.
end: string appended after the last value, default a newline.
flush: whether to forcibly flush the stream.

17

Python Programming Basics:
Strings and Type ‘str’

>>> print("Gidday, mate!")

Gidday, mate!

In IDLE’s interactive mode we can omit the print command:

>>> "Gidday, mate!"

’Gidday, mate!’

The interpreter ‘‘response’’ -- prints the value of the last command.

We now ask for the type of "Gidday, mate!"

>>> type("Gidday, mate!")

<class ’str’>

It is of type str, indicating this is a string. In computer science, a sequence of
characters, enclosed by single or double quotes, is termed a string. Strings
are colored green by IDLE.

18

Examples of String Operations (1)
Strings have many built-in methods, like converting to lower (or

upper) case, replacing a substring by another, concatenation, etc.
Some of these methods’ names have str. as their prefix, indicating
they operate on the class “string”.

>>> str.upper("Michal")

'MICHAL'

>>> str.lower("Amir")

'amir'

>>> str.replace("breaking news", "breaking", "fake")

’fake news’

>>> str.upper(str.replace("breaking news", "breaking", "fake"))

'FAKE NEWS'

19

Examples of String Operations (2)
>>> "Py" + "thon"

’Python’

>>> "na " + "nach " + "nachman " + "nachman meUman "

’na nach nachman nachman meUman ’

>>> "Trump" + ""

'Trump'

>>> "Trump" + " "

'Trump '

20

"" is the empty string

+ denotes concatenation

a space

Examples of String Operations (3)
>>> "Bakbuk Bli Pkak " * 4

’Bakbuk Bli Pkak Bakbuk Bli Pkak Bakbuk Bli Pkak Bakbuk

Bli Pkak ’

>>> "Bakbuk Bli Pkak " * 0

????

>>> "Bakbuk Bli Pkak " * -3

????

>>> "Bakbuk Bli Pkak " * 2.7

????

There are obviously many other string methods, but for the time
being, these will do.
21

* denotes repetition

error? empty string?

Numerical Types and Operations
>>> 4
4
>>> type(4)
<class 'int '> integer type
>>> 3.14159265358979323846264338327950288
3.141592653589793 ouch ! truncated ...
>>> type(3.14159265358979323846264338327950288)
<class 'float '> floating point type representing “reals”

>>> 8/5
1.6 / returns a float, the result of division
>>> 8//5
1 // returns an integer, the floor of division
>>> 8%5
3 % returns an integer, the remainder of division

>>> type(8/5)
<class 'float '>
>>> type(8//5)
<class 'int '>

Addition, subtraction, multiplication exist as well (mix, match, try!).

22

Numerical Types and Operations (2)
In arithmetic operations mixing integers and floating point numbers, the
result is typically a floating point number (changing the type this way is
termed coersion or casting).

>>> 4+3.14

7.140000000000001

>>> 4/3.14

1.2738853503184713

>>> 4*3.14

12.56

>>> 3.14**4

97.21171216000002

>>> 3.14*0

0.0

>>> 3.14/0
Traceback (most recent call last):
File "<pyshell#8>", line 1, in <module>
3.14/0
ZeroDivisionError: float division by zero

23

** is exponentiation

Operator precedence and associativity

• An expression may include more than one operator

• The order of evaluation depends on operator’s precedence and
associativity:
– Higher precedence operators are evaluated before lower precedence

operators.

– The order of evaluation of equal precedence operators depends on
their associativity.

• Parentheses override this default ordering.
– No need to know/remember the details

– When in doubt, use parentheses!

24

Operator precedence and associativity:
examples

>>> 20-4*3 * before – (higher precedence)

8

>>> 20–(4*3) equivalent to the previous one

8

>>> (20-4)*3 Parentheses can change the order

48

>>> 3*5//2 these equal precedence ops are evaluated

7 from left to right (left associative)

>>> 3*(5//2) Parentheses can change the order

6

>>> 2**3**2 ** right->left (unlike most other ops)

512

>>> (2**3)**2 Parentheses can change the order

64

25

Error Messages
>>> 3*"3"
'333'

>>> 3+"3"
Traceback (most recent call last):
File "<pyshell#0>", line 1, in <module>
3+"3"

TypeError: unsupported operand type(s) for +: 'int' and 'str'

>>> "3"+3
Traceback (most recent call last):
File "<pyshell#1>", line 1, in <module>
"3"+3

TypeError: can only concatenate str (not "int") to str

• Note that the error message gives you some information on
the source of the error. Get used to reading (and
understanding) those errors.26

Variables and Assignments
• The following line is an assignment in Python. The left hand side is a

variable, used to store values for future reference. The right hand side is
an expression.

>>> n = 10

• The interpreter evaluates the expression and assigns its value to the
variable.

• Think of this assignment as creating a new “mapping“, where the
variable’s name, n, becomes bound to the value 10.

• In python, a variable is just a name.

– The variable’s name is a sequence of letters, digits and _ (underscore)

– The name must not start with a digit.

– Names are case sensitive: for example, grade and Grade differ.

27

The importance of names

But In programming, names are important:
Programs should be readable by other
programmers.

28

(reference to Romeo and Juliet due to John Guttag)

Shakespeare/Romeo and Juliet
ACT II, SCENE II

What's in a name? that which we call a rose

By any other name would smell as sweet;

Variables and Assignments:
An Example

>>> n = 10

>>> print(n)

10

The value can be changed by a subsequent assignment:
>>> n = 11

>>> print(n)

11

In python the type of a variable is dynamic: it can change by
subsequent assignments:
>>> type(n)

<class 'int'>

>>> n = 1.3141

>>> print(n)

1.3141

>>> type(n)

<class 'float'>
29

More Variables and Assignments
• Variables with assigned values can be used as part of the

evaluation of other expressions:

>>> a = 1

>>> b = 2

>>> print(a+b)

3

>>> c = 2*a - b

>>> print(c)

0

>>> c = c+1

>>> print(c)

1

>>> print(c+d)

NameError: name 'd' is not defined

30

A Convenient Shorthand

• Consider the following sequence of instructions:
>>> a = 0

>>> a = a+6

>>> a

6

• Now suppose that, following the advice given by the course staff to give
meaningful names to variables, you rewrite the code, using a more
meaningful, albeit longer, name:

>>> votes_Biden = 0

>>> votes_Biden = votes_Biden + 6000

>>> votes_Biden

6000

• Python provides a shorthand for the addition, which may appeal to the
young and impatient…:

>>> votes_Biden = 0

>>> votes_Biden += 6000

>>> votes_Biden

6000

31

A Convenient Shorthand (2)
• This shorthand is applicable to any assignment where a variable

appears on both the right and left hand sides.

>>> x = 0

>>> x+=10

>>> x

10

>>> x*=4

>>> x

40

>>> x**=2

>>> x

1600

>>> x**=0.5

>>> x

40.0

>>> title = "Dr."

>>> title += " Strangelove"

>>> title

'Dr. Strangelove'

• Use with some caution: the shorthand is not always equivalent to
the original expression (more in the "Tirgul").32

Conditionals (if, else)

temp = 30 # degrees centigrade

wind = 17 # knots (nautical miles per hour)

if temp>25 and wind>13:

print("go windsurfing ")

else:

if temp>25 and wind<=13:

print("go to the beach ")

else:

if temp>30:

print("put your hat on")

else:

print("attend class ")

Output:
Go windsurfing

33

Lecture 1: Highlights
• High level programs are transformed into machine language. For Python this is

done by an interpreter.

• IDLE is one such IDE for Python, which we recommend for this course

• Values in Python belong to types (a.k.a classes). We saw str, int, float (more later)

– Strings are enclosed within " "

– Integers (from latin: “whole”): …,-3,-2,-1,0,1,2,3,…

– Numbers of class ’float’ represent real numbers, often approximating the full (infinite
precision) value

• Different types enable different operations, including some (but not every) “mixing”

• Assignments to variables are used to store values in the memory for later use

– Subsequent assignments to the same variable can change its value and even its type
(types in Python are dynamic)

• It’s important to read error messages that indicate the source of the “problem”

• Conditional statements allow branching in the program’s flow34

Appendix

35

From High Level to Machine Level

• The transformation from high level to machine level
languages comes in two flavors:

– By interpreters (as in Python) and

– by compilers.

• A brief description follows.

36

The Interpreter
The interpreter translates and executes the high level
program, line by line.

(figure taken from the old intro to CS Scheme course)

37

The Compiler
The compiler first translates the complete high
level program to a machine level program. only
then the program is executed.

(figure taken from the Scheme course site)

38

Specific Programming Language

• Python is an interpreted programming language.

– So are JavaScript, Lisp (and its variant, Scheme), MATLAB,
Perl, PHP, Ruby, and many many other programming
languages.

• In contrast, C is a compiled programming language.

– So are C, C++, Fortran, Haskell, Pascal, and many many
other programming languages (more precisely, Java is
compiled to “bytecode”, which is then interpreted)

39

Compiled vs. Interpreted Programming
Languages

• The difference between a compiler and an interpreter usually
reflects language difference.

• A compiler is useful if the language allows checking certain
properties of the program before running it.

• The main difference in this respect is between languages with
static types and those with dynamic types

• Python has dynamic types. The meaning of this will be
understood later today.

• It is believed that dynamic types give the programmer more
flexibility, while static types provide more safety, because certain
errors may be detected before running the program.

40

