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Comic Relief *

אנו מזמינים אתכם לשלוח לנו הצעות לתמונות שיופיעו על שקפים אלו לאורך הסמסטר* 



Recursion: Plan

• Definition and basic examples
• Fibonacci

• factorial

• Recursive binary search

• Sorting
• Quick-Sort

• Merge-Sort

• Towers of Hanoi (and the “monster of Hanoi”)

• Improving recursion with memoization

• An example from Game theory – Chomp! (removed this semester)
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Recursion: Definition and First Example

• A function 𝑓, whose definition contains a call to 𝑓 itself, is called 
recursive. 

• A simple example is the following function that computes the 
factorial of a natural input number, 𝑛! = 𝑛 ⋅ 𝑛 − 1 ⋅ … ⋅ 2 ⋅ 1 (and it 
is convenient to define 0! = 1)

• Observe that 𝑛! = 𝑛 ⋅ 𝑛 − 1 !, for 𝑛 ≥ 1.
• It can be coded in Python, using recursion, as follows:

def factorial(n):

if n==0: 

return 1

else: 

return n * factorial(n-1)
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x = factorial(2)

factorial(2)

if n==0:

return 1

return n * factorial(1)

factorial(1)

if n==0:

return 1

return n * factorial(0)

factorial(0)

if n==0:

return 1

1

2

1

n=2

n=1

n=0

What Happens at Run Time?

• For example, here is a record of the execution for factorial(2):



Fibonacci Numbers
• A second simple example are the Fibonacci numbers:

𝐹0 = 1, 𝐹1 = 1, 

and for 𝑛 > 1, 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2

• A function that computes the 𝑛’th Fibonacci number can be 
programmed in Python, using recursion:

def fibonacci(n):

if n<=1:

return 1

else:

return fibonacci(n-1) + fibonacci(n-2)

• Sanity check:
>>> [fibonacci(n) for n in range(10)]

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
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Recursion Trees - Order of Execution

• Note the order of execution as animated in the following gif:
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https://commons.wikimedia.org/wiki/File:Fibonacci_call_tree_5.gif

https://commons.wikimedia.org/wiki/File:Fibonacci_call_tree_5.gif


Back to Sorting

• We saw one simple sorting algorithm – Selection sort, 
whose time complexity for both best and worst cases is 
𝑂(𝑛2). 

• We will now see another approach to sorting (out of 
very many), called Quicksort, which employs both 
randomization and recursion.
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Quicksort - Description
• Our input is an unsorted list, say

[28, 12, 32, 27, 10, 12, 44, 20, 26, 6, 20, 21]

• We choose a pivot element, simply one of the elements in the list. For 
example, suppose we chose 20 (the second occurrence).

• We now compare all elements in the list to the pivot. We create three 
new lists, termed smaller, equal, greater. Each element from the 
original list is placed in exactly one of these three lists, depending on 
its size with respect to the pivot.

o smaller = [12, 10, 12, 6]
o equal = [20, 20]
o greater = [28, 32, 27, 44, 26, 21]

• Note that the equal list contains at least one element, and that both 
smaller and greater are strictly shorter than the original list (why is 
this important?)10



Quicksort - Description (cont.)

• What do we do next? 
• We recursively sort the sub-lists smaller and greater
• And then we append the three lists, in order (+ means list 

concatenation). Note that equal requires no sorting.

return quicksort(smaller) + equal + quicksort(greater)

• quicksort(smaller) = [6, 10, 12, 12]
equal = [20, 20]
quicksort(greater) = [21, 26, 27, 28, 32, 44]

[6, 10, 12, 12] + [20, 20] + [21, 26, 27, 28, 32, 44]
= [6, 10, 12, 12, 20, 20, 21, 26, 27, 28, 32, 44]

• The original list was
[28, 12, 32, 27, 10, 12, 44, 20, 26, 6, 20, 21]
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Quicksort: A Graphical Depiction
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Quicksort: Python Code

import random # a package for (pseudo) random generation

def quicksort(lst):

if len(lst) <= 1: # empty lists or length 1 lists

return lst

else:

pivot = random.choice(lst) # random element from lst

smaller = [elem for elem in lst if elem < pivot]

equal =   [elem for elem in lst if elem == pivot]

greater = [elem for elem in lst if elem > pivot]

# ain't these selections neat?

return quicksort(smaller) + equal + quicksort(greater)

# two recursive calls

13



Implementation Comment: 
The Use of List Comprehension

• The use of list comprehension is a very convenient mechanism for 
writing code, and Python is extremely good at it.

• This convenience is good for quickly developing code. It also helps to 
develop correct code. But this simplicity and elegance do not 
necessarily imply an efficient execution.

• For example, our quicksort algorithm goes three times over the original 
list. Furthermore, it allocates new memory for the three sublists. 
• There are versions of quicksort that go over the list only once, and swap 

original list elements in-place, reusing the same memory. These versions 
ate more efficient, yet more error prone and generally take longer to 
develop.

• Eventually you will choose, on a case by case basis, which style of 
programming to use.
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Quicksort: Complexity

To analyze the time complexity of quicksort, we will use recursion 
trees.
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Worst-Case Analysis
• Worst partition: at each recursive call the pivot is selected to be the 

minimal or maximal value in the input list, dividing the problem into sizes 
𝑛 − 1 and 0.

• In terms of time complexity, the cases are equivalent.

17
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Pivot is minimumPivot is maximum



Worst-Case Analysis (cont.)
• Work at each step: besides the recursive calls, each step requires ≤ 𝑐 ⋅ 𝑛

time for 𝑛 > 0 and some constant 𝑐. For a problem size of 𝑛 = 0 the 
amount of work ≤ 𝑐.
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≤ 𝑐𝑛
time

def quicksort(lst):

if len(lst) <= 1: # empty lists or length 1 lists

return lst

else:

pivot = random.choice(lst) # random element from lst

smaller = [elem for elem in lst if elem < pivot]

equal =   [elem for elem in lst if elem == pivot]

greater = [elem for elem in lst if elem > pivot]

# ain't these selections neat?

return quicksort(smaller) + equal + quicksort(greater)

# two recursive calls

3 ⋅ 𝑂(𝑛)

𝑂(𝑛) without recursion

𝑂(1)

𝑂(log 𝑛)

𝑛 − 1

𝑛

0



Worst-Case Analysis (final)
• The recursion tree, annotated with the amount of time spent at each step:
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𝑖 + 𝑐 𝑛 − 1 = 𝑂(𝑛2)

• Total amount of time:



Complexity using Recurrence Relations

• The worst case run time satisfies the recurrence relation

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑛 + 𝑇 𝑛 − 1

where 𝑐 is some constant. 

• The solution for this equation is, as we saw, 

𝑇 𝑛 = 𝑂(𝑛2)
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Best-Case Analysis - Example

21

• At each recursive call the pivot is selected to be the median

• There are 2 sub-problems to solve, of sizes at most 𝑛/2.

• Here are two such recursion trees for example:

3

8

11

4
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Best-Case Analysis
• The recursion tree (with minor simplifications), annotated 

with the amount of time spent at each step:
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• Total amount of time:

𝑇 𝑛 = time per layer × number of layers ≤ 𝑐𝑛 ⋅ 𝑂(log 𝑛) = 𝑂(𝑛 log 𝑛)
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Complexity using Recurrence Relations

• The best case run time satisfies the recurrence relation

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑛 + 2 ∙ 𝑇(𝑛/2)

where 𝑐 is some constant.

• The solution for this equation is, as we saw, 

𝑇 𝑛 = 𝑂(𝑛 ⋅ 𝑙𝑜𝑔𝑛)
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Quicksort: Average Complexity

• A more complicated analysis can be done for the average
running time. 

• Average over what? 

• It can be shown that the average running time to sort a list of 
𝑛 elements is also 𝑂(𝑛 ⋅ 𝑙𝑜𝑔𝑛)

• The “best-case” constant in the “big O” notation is slightly 
smaller than the “average-case” constant.

• Rigorous analysis is deferred to the data structures course.

24



Deterministic Quicksort
• We could take the element with the first, last, middle or any other 

index in the list as the pivot. 

• For example:
pivot = lst[0]

• This would usually work well (assuming some random distribution 
of input lists). 

• However, in some cases this choice would lead to poor 
performance (even though the algorithm will always converge).

• For example, if the input list is already sorted (or close to sorted), 
and the pivot is the first or last element.

25



Quicksort: Pivot Selection, cont.

• Instead of a fixed choice, the recommended choice is to pick 
the pivot at random. 

• With high probability, the randomly chosen pivot will be 
neither too close to the minimum nor too close to the 
maximum. 

• This implies that both the lists smaller and greater are 
substantially shorter than the original list, and yields good 
performance with high probability (at this point this is an 
intuitive claim, nothing rigorous.)

26
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Comic Relief *

הצעות לתמונות שיופיעו על שקפים אלו לאורך הסמסטרנולאתכם לשלוח ניםמזמיואנ* 



Merge-Sort

31
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def merge(A, B):

''' Merge list A of size n and list B of size m

A and B must be sorted! '''

n = len(A)

m = len(B)

C = [None for i in range(n + m)]

a=0; b=0; c=0

while a<n  and b<m: #more element in both A and B

if A[a] < B[b]:

C[c] = A[a]

a += 1

else:

C[c] = B[b]

b += 1

c += 1

C[c:] = A[a:] + B[b:] #append remaining elements

return C

Merging Sorted Lists (reminder)

Time complexity: 𝑂(𝑛 + 𝑚)



Merge-Sort: Description
• Merge-sort is a recursive sorting algorithm (i.e. like quicksort it also follows 

a “divide and conquer” approach). 

• Merge-Sort is deterministic

• An input list (unsorted) of size 𝑛 is split to two halves: 

0… 𝑛/2 and 𝑛/2 + 1…(𝑛 − 1)

33

• If we sorted these 2 halves, we would then only need to merge them.

• Does anybody know a nice sorting algorithm for the 2 halves?

split

merge

108293274338

274338 108293

433827 821093

824338271093



Merge-Sort: Python Code

def mergesort(lst):

""" recursive mergesort """

n = len (lst)

if n <= 1:

return lst

else:

return merge(mergesort(lst[0:n//2]) ,

mergesort(lst[n//2:n]))

# two recursive calls, then merge

36



Merge-Sort: Python Code

def mergesort(lst):

""" recursive mergesort """

n = len (lst)

if n <= 1:

return lst

else:

return merge(mergesort(lst[0:n//2]) ,

mergesort(lst[n//2:n]))

# two recursive calls, then merge
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Merge-Sort: example

38

108293274338

recursive call

recursion fold

+        merge



Merge-Sort: example
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108293274338

274338recursive call

recursion fold

+        merge



Merge-Sort: example
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108293274338

274338

38

recursive call

recursion fold

+        merge



Merge-Sort: example
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108293274338

274338

38

38

recursive call

recursion fold

+        merge



Merge-Sort: example
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108293274338

274338

38 2743

38

recursive call

recursion fold

+        merge



Merge-Sort: example
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108293274338

274338

38 2743

43 27

38

recursive call

recursion fold

+        merge



Merge-Sort: example
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274338

38 2743

43 27
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recursive call

recursion fold

+        merge

+



Merge-Sort: example
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108293274338

274338

38 2743

43 27

432738

433827

recursive call

recursion fold

+        merge

+

+



Merge-Sort: example
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108293274338

274338

38 2743

43 27

432738

433827

108293recursive call

recursion fold

+        merge
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Merge-Sort: example
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43 27
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Merge-Sort: example

48

108293274338

274338

38 2743

43 27

432738

433827

108293

93

3 9

93

recursive call

recursion fold

+        merge

+

+

+



Merge-Sort: example

49

108293274338

274338

38 2743

43 27

432738

433827

108293

93 1082

3 9 82 10

93 8210

recursive call

recursion fold

+        merge
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Merge-Sort: example
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274338

38 2743
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Merge-Sort: example
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38 2743

43 27
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Merge-Sort: Recursion Tree
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108293274338

274338

38 2743

43 27

108293

93 1082

3 9 82 10

recursive call



Merge Sort: Complexity Analysis
• Given a list with 𝑛 elements, mergesort makes 2 

recursive calls. One to a list with 𝑛/2 elements, the 
other to a list with 𝑛/2 elements. 

• The two returned lists are subsequently merged.

• Question: Is there a difference between worst-case and 
best-case for mergesort?

• Recursion tree and time complexity analysis – discussion 
in class.
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Merge Sort: Complexity Analysis

• The runtime of mergesort on lists with 𝑛 elements, for both 
best and worst case, satisfies the recurrence relation 

𝑇 𝑛 ≤ 𝑐𝑛 + 2𝑇
𝑛

2
, 

where 𝑐 is a constant.

• We already saw that the solution to this relation is      
𝑇(𝑛) = 𝑂(𝑛 ∙ log 𝑛).

• Note that the mergesort function uses slicing which adds an 
overhead of 𝑂(𝑛) to the time complexity of each level in the 
recursion tree. 

• Asymptotically, however, this overhead is negligible.
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A Three-Way Race
import time

import random

from quicksort import *  # need quicksort.py

from mergesort import *  # need mergesort.py

print("3 way race")

for func in [quicksort, mergesort, sorted]:

print(func.__name__)

for n in [2000, 4000, 8000]:

print("n=", n, end=" ")

rlst = [random.randint(0,n) for i in range(n)]

t0 = time.perf_counter()

for i in range(100):

func(rlst) # not inplace, lst unchanged !

t1 = time.perf_counter()

print(t1-t0)
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A Three-Way Race (time in seconds)

quicksort

n= 2000 0.4635085

n= 4000 0.9853195

n= 8000 2.1039044

mergesort

n= 2000 0.9249551

n= 4000 1.7947224000000004

n= 8000 3.9287744999999994

Sorted (Python's built-in sorted)
n= 2000 0.0193020999999991

n= 4000 0.043065200000000914

n= 8000 0.09296229999999994 (I think we have a winner!)

• The results speak for themselves. Conclusions?
56



A Note on Space (memory) Complexity

57

• A measure of how much memory the algorithm needs to allocate
• not including memory allocated for the input of the algorithm

• Assuming memory can be reused if needed, this is the maximal amount
of memory needed at any time point during the algorithm's execution

• Compare to time complexity, which relates to the cumulative amount
of operations made along the algorithm's execution

algorithm instructions

memory 
taken

max = space complexity



Space Complexity and Recursion

• Recursion depth has an implication on the space (memory) 
complexity, as each recursive call requires opening a new 
environment in memory. 

• At each recursive call we consider the space allocation 
requirements, just as we did earlier in the course. 
For example:
• copying (parts of) the input
• list / string slicing
• using + operator for lists (as opposed to += or lst.append)

• To analyze the space complexity of a recursive function, we 
consider how much memory is required in the deepest leaf
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Comic Relief *

Cover of Ummagumma, a double album by Pink Floyd, released in 1969.
Taken from Wikipedia

אנו מזמינים אתכם לשלוח לנו הצעות לתמונות שיופיעו על שקפים אלו לאורך הסמסטר* 



Towers of Hanoi
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And the Monster of Hanoi



Towers of Hanoi
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(figure from Wikipedia)

Towers of Hanoi is a well-known mathematical 
puzzle, and no class on recursion, including this 
one (a recursive claim in itself :-) ) , is complete 
without discussing it.



Towers of Hanoi - Origin

The puzzle was invented by the French mathematician Édouard
Lucas in 1883. There is a story about an Indian temple in Kashi
Vishwanath which contains a large room with three time-worn 
posts in it surrounded by 64 golden disks. Brahmin priests, acting 
out the command of an ancient prophecy, have been moving 
these disks, in accordance with the immutable rules of the 
Brahma, since that time. The puzzle is therefore also known as 
the Tower of Brahma puzzle. According to the legend, when the 
last move of the puzzle will be completed, the world will end. It 
is not clear whether Lucas invented this legend or was inspired 
by it.
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(text  from Wikipedia)



Towers of Hanoi - Description
• There are three rods, named A, B, C, and n disks of 

different sizes which can be placed onto any rod. 

• The puzzle starts with all n disks in a stack in 
ascending order of size on one rod, say A, so that 
the smallest is at the top (see figure).
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(figure from Wikipedia)



Towers of Hanoi: Rules of Game

• The objective of the puzzle is to move the entire stack of all 
n disks to another rod, say C, obeying the following rules:

• Only one disk may be moved at a time.

• Each move consists of taking the upper disk from one of the rods 
and sliding it onto another rod, on top of the other disks that may 
already be present on that rod.

• No disk may be placed on top of a smaller disk.

65

(figure and some text 
from Wikipedia)



Towers of Hanoi: Recursive View
• In order to think about a recursive solution, we should first have 

a recursive definition of a Hanoi tower: 
• it is either empty, 
• or it is a tower on top of a larger disk (larger than all the disks 

in the tower on top). 

Schematically:
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A tower of n-1 disks

A larger disk 

This is the base case

Another possibility is 
to let the base case be 
a tower of one disk



Towers of Hanoi: The algorithm

• We can now describe a recursive algorithm to move a 
stack of n disks from rod A to rod C using rod B as a 
helping rod.

• In the base case, when n=0, there is nothing to do. 

• If we chose n=1 as the base case, then the base case would 
be to move the single rod from A to C.

• The non- base case (n>0) will be shown in the next slide.
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Towers of Hanoi: Recursive Algorithm
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A B C

Move (recursively) top tower from A to B using C as helping rod

Move largest disk from A to C

Move (recursively) top tower from B to C using A as helping rod

Helping 
rod

Helping 
rod



Towers of Hanoi: Another Picture

69 A

Move (recursively) top tower from 
A to B using C as helping rod

Move (recursively) top tower from 
B to C using A as helping rod

Move largest disk from A to C

B C



Towers of Hanoi: Pseudo-Code

Input: number of disks, n
Output: sequence of moves needed 

to transfer n disks from A→C, using B as a “helping rod"

Algorithm:
• If n = 0, there is nothing to do.
• Otherwise (namely n > 0):

(1) Move* n-1 disks from A→B, using C as a “helping rod"
(2) Move the largest disk (numbered n) directly from A→C
(3) Move* n-1 disks from B→C, using A as a “helping rod"
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*recursively



Correctness of the Recursive Solution

• At no stage in the algorithm execution no rules are 
violated: 

• During the entire stage (1), disk n stays put on rod A. As it was the 
biggest of all n disks, no rule will be violated if some of the n-1 
disks are placed on top of it during the recursion in (1).

• In step (2), all n-1 smaller disks are on rod B, so moving disc n
directly from rod A to rod C is legal.

• The argument for step (3) is identical to the argument for step (1).
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Towers of Hanoi: Python Code

• We write a function of four arguments: n,start,via,target.

• The first argument, n, is the number of discs. The next three arguments are 
the three rods' "names", given the default values "A", "B", and "C". 

• The function prints the moves and does not return anything.

• Question: what is the base case here (it appears indirectly in the code).
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def HanoiTowers(n, start="A", via="B", target="C"):

""" Prints a list of steps to move a stack 

of n disks from rod "start" to rod "target" 

employing intermediate rod "via" 

"""

if n>0:

HanoiTowers(n-1, start, target, via)

print("Move disk", n, "from", start, "to", target)

HanoiTowers(n-1, via, start, target)



Towers of Hanoi: Running the Code
>>> HanoiTowers(1)

Move disk 1 from A to C

>>> HanoiTowers(2)

Move disk 1 from A to B

Move disk 2 from A to C

Move disk 1 from B to C

>>> HanoiTowers(3)

Move disk 1 from A to C

Move disk 2 from A to B

Move disk 1 from C to B

Move disk 3 from A to C

Move disk 1 from B to A

Move disk 2 from B to C

Move disk 1 from A to C

73



Towers of Hanoi: Running the Code
>>> HanoiTowers(1, "A", "B", "C")

disk 1 from A to C
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1

A → C (via B)

0

A → B (via C)

0

B→ C (via A)
disk 1 

from A 

to C



Towers of Hanoi: Running the Code
>>> HanoiTowers(2, "A", "B", "C")

disk 1 from A to B

disk 2 from A to C

disk 1 from B to C
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1

A → B (via C)

0

A → C (via B)

0

C→ B (via A)
disk 1 

from A 

to B

2

A → C (via B)

disk 2 

from A 

to C

1

B → C (via A)

0 0

disk 1 

from B 

to C

B → A (via C) A→ C (via B)



Towers of Hanoi: Running the Code
>>> HanoiTowers(3, "A", "B", "C")

disk 1 from A to C

disk 2 from A to B

disk 1 from C to B

disk 3 from A to C

disk 1 from B to A

disk 2 from B to C

disk 1 from A to C
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1

A → C (via B)

0 0

disk 1 

from A 

to C

2

A → B (via C)

disk 2 

from A 

to B

1

C → B (via A)

0 0

disk 1 

from C 

to B

1

B → A (via C)

0 0

disk 1 

from B 

to A 

2

B → C (via A)

disk 2 

from B 

to C

1

A → C (via B)

0 0

disk 1 

from A 

to C

3

A → C (via B)

disk 3 

from A 

to C



Towers of Hanoi: Running the Code
HanoiTowers(n, "A", "B", "C")
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n-1

A → B (via C)

disk n-1 

from A 

to B

1

0 0

disk 1 

from __ 

to __ 

n-1

B → C (via A)

disk n-1 

from B 

to C

1

0 0

disk 1 

from __ 

to __

n

A → C (via B)

disk n 

from A 

to C

1

0 0

disk 1 

from __ 

to __ 

1

0 0

disk 1 

from __ 

to __ 



Towers of Hanoi: Number of Moves

• The time complexity of our solution equals to the number of moves (as 
each iteration takes O(1) time)

• Let us denote by 𝐻(𝑛) the number of moves required to solve an 𝑛 disk
instance of the puzzle.

• In the recursive solution outlined above, to solve an 𝑛 disks instance we 
solve two instances of 𝑛 − 1 disks, plus one direct move. This gives us the 
recursive relation

𝐻(0) = 0

For 𝑛 > 0,  𝐻(𝑛) = 2 ∙ 𝐻(𝑛 − 1) + 1

whose solution is 𝐻(𝑛) = 2𝑛 − 1 (You should be able to verify the last 
equality, using recursion trees or induction.)

• The recursion depth here is “just” 𝑂(𝑛). But the size of the recursion tree 
is 𝑂(2𝑛), which is exponential in 𝑛. This is also the time complexity of the 
algorithm.
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Optimality of Number of Moves

• Hey, wait a minute.  𝐻(𝑛) = 2𝑛 − 1 is the number 
of moves in the solution presented above. Can't 
we find a more efficient solution?

• This is very good thinking in general. 

• But in this case, we can argue that 𝐻(𝑛) = 2𝑛 − 1
moves are required from any solution strategy. (of 
course, more inefficient strategies do exist).

• Can you explain why?
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Comic Relief *

אני מזמין אתכם לשלוח לי הצעות לתמונות שיופיעו על שקפים אלו לאורך הסמסטר* 

"הרקורסיותמועדון " הפייסבוקמתוך עמוד 



“Monster of Hanoi” *

• Suppose a monster demanded to know what the (397+ 381)‘th
move in an 𝑛 = 200 disk Towers of Hanoi puzzle is, or else  . . ..

81 * This term is common only within our course…



“Monster of Hanoi”
• Suppose a monster demanded to know what the (397+ 381)‘th

move in an 𝑛 = 200 disk Towers of Hanoi puzzle is, or else . . . .

• Having seen and even understood the material, you realize that 
either expanding all 𝐻(200) = 2200 − 1 moves, or even just the 
first 397+ 381, is out of computational reach in any conceivable 
future, and the monster should try its luck elsewhere.

• You eventually decide to solve this new problem. The first step 
towards taming the monster is to give the new problem a name:

Hanoi_move(n, k, start="A", via="B", target="C")
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“Monster of Hanoi” – small example

>>> HanoiTowers(3)

Move disk 1 from A to C

Move disk 2 from A to B

Move disk 1 from C to B

Move disk 3 from A to C

Move disk 1 from B to A

Move disk 2 from B to C

Move disk 1 from A to C
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22 − 1

22 − 1

23 − 1move no. 22

1

2

3

4

5

6

7



“Monster of Hanoi” – small example

>>> HanoiTowers(3)

Move disk 1 from A to C

Move disk 2 from A to B

Move disk 1 from C to B

Move disk 3 from A to C

Move disk 1 from B to A

Move disk 2 from B to C

Move disk 1 from A to C

• If  1 ≤ 𝑘 < 2𝑛−1 the move we are looking for is within the first
part. 
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22 − 1

1

2

3

4

5

6

7



“Monster of Hanoi” – small example

>>> HanoiTowers(3)

Move disk 1 from A to C

Move disk 2 from A to B

Move disk 1 from C to B

Move disk 3 from A to C

Move disk 1 from B to A

Move disk 2 from B to C

Move disk 1 from A to C

• If 𝑘 = 2𝑛−1 this is the move we want. 
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move no. 22

1

2

3

4

5

6

7



“Monster of Hanoi” – small example

>>> HanoiTowers(3)

Move disk 1 from A to C

Move disk 2 from A to B

Move disk 1 from C to B

Move disk 3 from A to C

Move disk 1 from B to A

Move disk 2 from B to C

Move disk 1 from A to C

• If 2𝑛−1 < 𝑘 < 2𝑛 the move is within the third part
- In this case we want the 𝑘 − 2𝑛−1 ‘th move of this part.
- For example, the 𝑘 = 6’th move is the 6 − 22 = 2nd move in this part.
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22 − 1

1

2

3

4

5

6

7



“Monster of Hanoi” with Recursion
• To compute the 𝑘-th move in the an 𝑛 disk Tower of Hanoi puzzle, we 

recall the solution of the Tower of Hanoi puzzle, and think recursively:

• The solution to HanoiTowers takes 2𝑛 − 1 steps altogether
(so 1 ≤ 𝑘 ≤ 2𝑛 − 1), and consists of three (unequal) parts:

1. In the first part, which takes 2𝑛−1 − 1 steps, we move 𝑛 − 1 disks. 
If  1 ≤ 𝑘 < 2𝑛−1 the move we are looking for is within this part. 

2. In the second part, which takes exactly one step, we move disk 
number 𝑛. If 𝑘 = 2𝑛−1 this is the move we want. 

3. In the last part, which again takes 2𝑛−1 − 1 steps, we again move 
𝑛 − 1 disks. If 2𝑛−1 < 𝑘 < 2𝑛 the move is within this part

- In this case we want the 𝑘 − 2𝑛−1 ‘th move of this part
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Hanoi Monster - Code
def Hanoi_move(n, k, start="A", via="B", target="C"):

""" Finds the k-th move in an Hanoi Towers instance with n disks.

Uses binary search on the sequence of steps

""" 

assert k>0 and k<2**n # k should satisfy 0<k<2**n

if k==2**(n-1): # k is the middle step

print("Move disk", n, "from", start, "to", target)

elif k < 2**(n-1): 

Hanoi_move(n-1, k, start, target, via)

else:

Hanoi_move(n-1, k-2**(n-1), via, start, target)

• Note the changing roles of the rods, as in the HanoiTowers
function.
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Recursive Monster Code: Executions

• We first test it on some small cases, which can be verified by running the 
HanoiTowers program.

>>> Hanoi_move(3, 1)

Move disk 1 from A to C

>>> Hanoi_move(3, 4)

Move disk 3 from A to C

>>> Hanoi_move(3, 6)

Move disk 2 from B to C

• Once we are satisfied with this, we solve the monster's question.

>>> hanoi_move(200, 3**97+381)

Move disk 11 from B to C' # saved from monster!
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>>> HanoiTowers(3)

Move disk 1 from A to C

Move disk 2 from A to B

Move disk 1 from C to B

Move disk 3 from A to C

Move disk 1 from B to A

Move disk 2 from B to C

Move disk 1 from A to C



Recursive Monster Solution 
and Binary Search

• The recursive Hanoi_move makes at most one recursive call 
each time.

• The way it “homes" on the right move employs the already 
familiar paradigm of binary search: 

• it first determines if move number k is exactly the middle move in the 
n disk problem. If it is, then by the nature of the problem it is easy to 
exactly determine the move.

• If not, it determines if 

• the move is in the first half of the moves‘ sequence or 

• The move is in the second half, 

• and makes a recursive call with the correct permutation of rods (in the 
latter case also k should change).
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Recursive Monster Solution 
- Complexity

• Each time we decrease the size of the problem by about half

• 2𝑛 − 1 ⇒ 2𝑛−1 − 1 ⇒ 2𝑛−2 − 1 ⇒ … ⇒ 21 − 1

• The number of steps is linear in 𝑛 (and not in 2𝑛 − 1, the total 
length of the sequence of moves).

• Each step requires 𝑂(1) time, so the complexity is 𝑂(𝑛). 

• Another way to look at it – we use binary search on a search 
space of size 2𝑛 − 1. So, the time complexity is 
𝑂(log(2𝑛 − 1)) = 𝑂 𝑛 .
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