
Extended Introduction to Computer Science
CS1001.py

Recursion(cont.): Quick-Sort
Merge-Sort
Towers of Hanoi

* Slides based on a course designed by Prof. Benny Chor

Chapter E
Lecture 10

Amir Rubinstein, Michal Kleinbort

School of Computer Science
Tel-Aviv University

Fall Semester 2023-24
http://tau-cs1001-py.wikidot.com

http://tau-cs1001-py.wikidot.com/

(חומר שירד בשל קיצור הסמסטר-באדום)מבנה ונושאי הקורס

2

נושאים מתוכנניםפרק

A . מודל הזיכרון, פונקציות, לולאות, משפטי תנאי, משתנים,טיפוסי ערכים: תכנות בסיסי•פייתוןיסודות

ופונקציות , למבדאפונקציות , פייתוןדקדוקים פורמליים ותהליך הפירוש של :נושאים נוספים•

"נכון"סגנון תכנות , (זמן ריצה, תחביר)סוגי שגיאות , אקראיות ושימושיה,סדר גבוה

B .ייצוג שלמים בשיטה הבינארית•ייצוג טיפוסי מידע

floating pointייצוג מספרים עם נקודה עשרונית בשיטת •

(ASCII ,Unicode)ייצוג תווים •

C .מיזוג רשימות ממוינות, מיון בחירה, חיפוש בינארי•אלגוריתמים בסיסיים וסיבוכיות

O notation-סיבוכיות ו•
D .רפסון-שיטת ניוטון: בעברמציאת שורש של פונקציה ממשית רציפה בשיטת החציה •חישוב נומרי,

𝜋קירוב ל, ואינטגרליםחישוב נגזרות

E . נוספותדוגמאות , ממואיזציה, מיון מיזוג, מיון מהיר, חיפוש בינארי, י'פיבונאצ, עצרת•רקורסיה

F .טבעית בשיטת העלאה בחזקה•נושאים בתורת המספריםIterated squaring

(המשפט הקטן של פרמה)בדיקת ראשוניות הסתברותית •

להחלפת מפתח סודיDiffie-Hellmanפרוטוקול •

(GCD)מחלק משותף מקסימלי •

G . תכנות מונחה עצמים(OOP) שדות ומתודות, מחלקות•ומבני נתונים

פייתוןרשימות מקושרות והשוואה לרשימות של •

עצי חיפוש בינאריים•

hashטבלאות •

ופונקציות גנרטור(streams)זרמים •

H . אלגוריתם •טקסטCYKרבין-קארפאלגוריתם : בעבר

דחיסת למפל זיו, האפמןדחיסת •

I . נושאים נוספים לפי הזמן, (ממוצע וחציון מקומי)ניקוי רעש , ייצוג תמונה דיגיטלית•ייצוג ועיבוד תמונה

J . האמינגקוד , האמינגמרחק, ביט זוגיות, קוד חזרה, ספרת ביקורת•קודים לגילוי ולתיקון שגיאות

You
are

here

3

Comic Relief *

אנו מזמינים אתכם לשלוח לנו הצעות לתמונות שיופיעו על שקפים אלו לאורך הסמסטר*

Recursion: Plan

• Definition and basic examples
• Fibonacci

• factorial

• Recursive binary search

• Sorting
• Quick-Sort

• Merge-Sort

• Towers of Hanoi (and the “monster of Hanoi”)

• Improving recursion with memoization

• An example from Game theory – Chomp! (removed this semester)
4

You are here

Recursion: Definition and First Example

• A function 𝑓, whose definition contains a call to 𝑓 itself, is called
recursive.

• A simple example is the following function that computes the
factorial of a natural input number, 𝑛! = 𝑛 ⋅ 𝑛 − 1 ⋅ … ⋅ 2 ⋅ 1 (and it
is convenient to define 0! = 1)

• Observe that 𝑛! = 𝑛 ⋅ 𝑛 − 1 !, for 𝑛 ≥ 1.
• It can be coded in Python, using recursion, as follows:

def factorial(n):

if n==0:

return 1

else:

return n * factorial(n-1)

5

x = factorial(2)

factorial(2)

if n==0:

return 1

return n * factorial(1)

factorial(1)

if n==0:

return 1

return n * factorial(0)

factorial(0)

if n==0:

return 1

1

2

1

n=2

n=1

n=0

What Happens at Run Time?

• For example, here is a record of the execution for factorial(2):

Fibonacci Numbers
• A second simple example are the Fibonacci numbers:

𝐹0 = 1, 𝐹1 = 1,

and for 𝑛 > 1, 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2

• A function that computes the 𝑛’th Fibonacci number can be
programmed in Python, using recursion:

def fibonacci(n):

if n<=1:

return 1

else:

return fibonacci(n-1) + fibonacci(n-2)

• Sanity check:
>>> [fibonacci(n) for n in range(10)]

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

7

Recursion Trees - Order of Execution

• Note the order of execution as animated in the following gif:

8

https://commons.wikimedia.org/wiki/File:Fibonacci_call_tree_5.gif

https://commons.wikimedia.org/wiki/File:Fibonacci_call_tree_5.gif

Back to Sorting

• We saw one simple sorting algorithm – Selection sort,
whose time complexity for both best and worst cases is
𝑂(𝑛2).

• We will now see another approach to sorting (out of
very many), called Quicksort, which employs both
randomization and recursion.

9

Quicksort - Description
• Our input is an unsorted list, say

[28, 12, 32, 27, 10, 12, 44, 20, 26, 6, 20, 21]

• We choose a pivot element, simply one of the elements in the list. For
example, suppose we chose 20 (the second occurrence).

• We now compare all elements in the list to the pivot. We create three
new lists, termed smaller, equal, greater. Each element from the
original list is placed in exactly one of these three lists, depending on
its size with respect to the pivot.

o smaller = [12, 10, 12, 6]
o equal = [20, 20]
o greater = [28, 32, 27, 44, 26, 21]

• Note that the equal list contains at least one element, and that both
smaller and greater are strictly shorter than the original list (why is
this important?)10

Quicksort - Description (cont.)

• What do we do next?
• We recursively sort the sub-lists smaller and greater
• And then we append the three lists, in order (+ means list

concatenation). Note that equal requires no sorting.

return quicksort(smaller) + equal + quicksort(greater)

• quicksort(smaller) = [6, 10, 12, 12]
equal = [20, 20]
quicksort(greater) = [21, 26, 27, 28, 32, 44]

[6, 10, 12, 12] + [20, 20] + [21, 26, 27, 28, 32, 44]
= [6, 10, 12, 12, 20, 20, 21, 26, 27, 28, 32, 44]

• The original list was
[28, 12, 32, 27, 10, 12, 44, 20, 26, 6, 20, 21]

11

Quicksort: A Graphical Depiction

12

Quicksort: Python Code

import random # a package for (pseudo) random generation

def quicksort(lst):

if len(lst) <= 1: # empty lists or length 1 lists

return lst

else:

pivot = random.choice(lst) # random element from lst

smaller = [elem for elem in lst if elem < pivot]

equal = [elem for elem in lst if elem == pivot]

greater = [elem for elem in lst if elem > pivot]

ain't these selections neat?

return quicksort(smaller) + equal + quicksort(greater)

two recursive calls

13

Implementation Comment:
The Use of List Comprehension

• The use of list comprehension is a very convenient mechanism for
writing code, and Python is extremely good at it.

• This convenience is good for quickly developing code. It also helps to
develop correct code. But this simplicity and elegance do not
necessarily imply an efficient execution.

• For example, our quicksort algorithm goes three times over the original
list. Furthermore, it allocates new memory for the three sublists.
• There are versions of quicksort that go over the list only once, and swap

original list elements in-place, reusing the same memory. These versions
ate more efficient, yet more error prone and generally take longer to
develop.

• Eventually you will choose, on a case by case basis, which style of
programming to use.

14

Quicksort: Complexity

To analyze the time complexity of quicksort, we will use recursion
trees.

16

Worst-Case Analysis
• Worst partition: at each recursive call the pivot is selected to be the

minimal or maximal value in the input list, dividing the problem into sizes
𝑛 − 1 and 0.

• In terms of time complexity, the cases are equivalent.

17

𝑛 − 1

𝑛

0

𝑛

𝑛 − 10

or

Pivot is minimumPivot is maximum

Worst-Case Analysis (cont.)
• Work at each step: besides the recursive calls, each step requires ≤ 𝑐 ⋅ 𝑛

time for 𝑛 > 0 and some constant 𝑐. For a problem size of 𝑛 = 0 the
amount of work ≤ 𝑐.

18

≤ 𝑐𝑛
time

def quicksort(lst):

if len(lst) <= 1: # empty lists or length 1 lists

return lst

else:

pivot = random.choice(lst) # random element from lst

smaller = [elem for elem in lst if elem < pivot]

equal = [elem for elem in lst if elem == pivot]

greater = [elem for elem in lst if elem > pivot]

ain't these selections neat?

return quicksort(smaller) + equal + quicksort(greater)

two recursive calls

3 ⋅ 𝑂(𝑛)

𝑂(𝑛) without recursion

𝑂(1)

𝑂(log 𝑛)

𝑛 − 1

𝑛

0

Worst-Case Analysis (final)
• The recursion tree, annotated with the amount of time spent at each step:

19

𝑛 − 1

𝑛

2

𝑛 − 2

1

≤ 𝑐𝑛

≤ 𝑐(𝑛 − 1)
0

0

0

≤ 𝑐(𝑛 − 2)

≤ 𝑐
≤ 𝑐

≤ 𝑐

≤ 𝑐

𝑇 𝑛 ≤ 𝑐

𝑖=1

𝑛

𝑖 + 𝑐 𝑛 − 1 = 𝑂(𝑛2)

• Total amount of time:

Complexity using Recurrence Relations

• The worst case run time satisfies the recurrence relation

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑛 + 𝑇 𝑛 − 1

where 𝑐 is some constant.

• The solution for this equation is, as we saw,

𝑇 𝑛 = 𝑂(𝑛2)

20

Best-Case Analysis - Example

21

• At each recursive call the pivot is selected to be the median

• There are 2 sub-problems to solve, of sizes at most 𝑛/2.

• Here are two such recursion trees for example:

3

8

11

4

21

01

𝑛 = 8𝑛 = 7

3

7

11

3

11

Best-Case Analysis
• The recursion tree (with minor simplifications), annotated

with the amount of time spent at each step:

22

• Total amount of time:

𝑇 𝑛 = time per layer × number of layers ≤ 𝑐𝑛 ⋅ 𝑂(log 𝑛) = 𝑂(𝑛 log 𝑛)

𝑛/2

𝑛

𝑛/8𝑛/8

𝑛/4𝑛/4

𝑛/8𝑛/8

𝑛/2

𝑛/8𝑛/8

𝑛/4𝑛/4

𝑛/8𝑛/8

𝑐𝑛
𝑐𝑛

𝑐 ⋅ 2 ⋅
𝑛

2
= 𝑐𝑛

4 ⋅ 𝑐 ⋅
𝑛

4
= 𝑐𝑛

𝑐 ⋅
𝑛

2
𝑐 ⋅

𝑛

2

𝑐 ⋅
𝑛

4

8 ⋅ 𝑐 ⋅
𝑛

8
= 𝑐𝑛

R
ecu

rsio
n

 d
ep

th
: 𝑂

(lo
g
𝑛
)

𝑐 ⋅
𝑛

4 𝑐 ⋅
𝑛

4
𝑐 ⋅

𝑛

4

Complexity using Recurrence Relations

• The best case run time satisfies the recurrence relation

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑛 + 2 ∙ 𝑇(𝑛/2)

where 𝑐 is some constant.

• The solution for this equation is, as we saw,

𝑇 𝑛 = 𝑂(𝑛 ⋅ 𝑙𝑜𝑔𝑛)

23

Quicksort: Average Complexity

• A more complicated analysis can be done for the average
running time.

• Average over what?

• It can be shown that the average running time to sort a list of
𝑛 elements is also 𝑂(𝑛 ⋅ 𝑙𝑜𝑔𝑛)

• The “best-case” constant in the “big O” notation is slightly
smaller than the “average-case” constant.

• Rigorous analysis is deferred to the data structures course.

24

Deterministic Quicksort
• We could take the element with the first, last, middle or any other

index in the list as the pivot.

• For example:
pivot = lst[0]

• This would usually work well (assuming some random distribution
of input lists).

• However, in some cases this choice would lead to poor
performance (even though the algorithm will always converge).

• For example, if the input list is already sorted (or close to sorted),
and the pivot is the first or last element.

25

Quicksort: Pivot Selection, cont.

• Instead of a fixed choice, the recommended choice is to pick
the pivot at random.

• With high probability, the randomly chosen pivot will be
neither too close to the minimum nor too close to the
maximum.

• This implies that both the lists smaller and greater are
substantially shorter than the original list, and yields good
performance with high probability (at this point this is an
intuitive claim, nothing rigorous.)

26

30

Comic Relief *

הצעות לתמונות שיופיעו על שקפים אלו לאורך הסמסטרנולאתכם לשלוח ניםמזמיואנ*

Merge-Sort

31

32

def merge(A, B):

''' Merge list A of size n and list B of size m

A and B must be sorted! '''

n = len(A)

m = len(B)

C = [None for i in range(n + m)]

a=0; b=0; c=0

while a<n and b<m: #more element in both A and B

if A[a] < B[b]:

C[c] = A[a]

a += 1

else:

C[c] = B[b]

b += 1

c += 1

C[c:] = A[a:] + B[b:] #append remaining elements

return C

Merging Sorted Lists (reminder)

Time complexity: 𝑂(𝑛 + 𝑚)

Merge-Sort: Description
• Merge-sort is a recursive sorting algorithm (i.e. like quicksort it also follows

a “divide and conquer” approach).

• Merge-Sort is deterministic

• An input list (unsorted) of size 𝑛 is split to two halves:

0… 𝑛/2 and 𝑛/2 + 1…(𝑛 − 1)

33

• If we sorted these 2 halves, we would then only need to merge them.

• Does anybody know a nice sorting algorithm for the 2 halves?

split

merge

108293274338

274338 108293

433827 821093

824338271093

Merge-Sort: Python Code

def mergesort(lst):

""" recursive mergesort """

n = len (lst)

if n <= 1:

return lst

else:

return merge(mergesort(lst[0:n//2]) ,

mergesort(lst[n//2:n]))

two recursive calls, then merge

36

Merge-Sort: Python Code

def mergesort(lst):

""" recursive mergesort """

n = len (lst)

if n <= 1:

return lst

else:

return merge(mergesort(lst[0:n//2]) ,

mergesort(lst[n//2:n]))

two recursive calls, then merge

37

Merge-Sort: example

38

108293274338

recursive call

recursion fold

+ merge

Merge-Sort: example

39

108293274338

274338recursive call

recursion fold

+ merge

Merge-Sort: example

40

108293274338

274338

38

recursive call

recursion fold

+ merge

Merge-Sort: example

41

108293274338

274338

38

38

recursive call

recursion fold

+ merge

Merge-Sort: example

42

108293274338

274338

38 2743

38

recursive call

recursion fold

+ merge

Merge-Sort: example

43

108293274338

274338

38 2743

43 27

38

recursive call

recursion fold

+ merge

Merge-Sort: example

44

108293274338

274338

38 2743

43 27

432738

recursive call

recursion fold

+ merge

+

Merge-Sort: example

45

108293274338

274338

38 2743

43 27

432738

433827

recursive call

recursion fold

+ merge

+

+

Merge-Sort: example

46

108293274338

274338

38 2743

43 27

432738

433827

108293recursive call

recursion fold

+ merge

+

+

Merge-Sort: example

47

108293274338

274338

38 2743

43 27

432738

433827

108293

93

recursive call

recursion fold

+ merge

+

+

Merge-Sort: example

48

108293274338

274338

38 2743

43 27

432738

433827

108293

93

3 9

93

recursive call

recursion fold

+ merge

+

+

+

Merge-Sort: example

49

108293274338

274338

38 2743

43 27

432738

433827

108293

93 1082

3 9 82 10

93 8210

recursive call

recursion fold

+ merge

+

+

+ +

Merge-Sort: example

50

108293274338

274338

38 2743

43 27

432738

433827

108293

93 1082

3 9 82 10

93 8210

821093

recursive call

recursion fold

+ merge

+

+

+ +

+

Merge-Sort: example

51

108293274338

274338

38 2743

43 27

432738

433827

108293

93 1082

3 9 82 10

93 8210

821093

824338271093

recursive call

recursion fold

+ merge

+

+

+ +

+

+

Merge-Sort: Recursion Tree

52

108293274338

274338

38 2743

43 27

108293

93 1082

3 9 82 10

recursive call

Merge Sort: Complexity Analysis
• Given a list with 𝑛 elements, mergesort makes 2

recursive calls. One to a list with 𝑛/2 elements, the
other to a list with 𝑛/2 elements.

• The two returned lists are subsequently merged.

• Question: Is there a difference between worst-case and
best-case for mergesort?

• Recursion tree and time complexity analysis – discussion
in class.

53

Merge Sort: Complexity Analysis

• The runtime of mergesort on lists with 𝑛 elements, for both
best and worst case, satisfies the recurrence relation

𝑇 𝑛 ≤ 𝑐𝑛 + 2𝑇
𝑛

2
,

where 𝑐 is a constant.

• We already saw that the solution to this relation is
𝑇(𝑛) = 𝑂(𝑛 ∙ log 𝑛).

• Note that the mergesort function uses slicing which adds an
overhead of 𝑂(𝑛) to the time complexity of each level in the
recursion tree.

• Asymptotically, however, this overhead is negligible.

54

A Three-Way Race
import time

import random

from quicksort import * # need quicksort.py

from mergesort import * # need mergesort.py

print("3 way race")

for func in [quicksort, mergesort, sorted]:

print(func.__name__)

for n in [2000, 4000, 8000]:

print("n=", n, end=" ")

rlst = [random.randint(0,n) for i in range(n)]

t0 = time.perf_counter()

for i in range(100):

func(rlst) # not inplace, lst unchanged !

t1 = time.perf_counter()

print(t1-t0)

55

A Three-Way Race (time in seconds)

quicksort

n= 2000 0.4635085

n= 4000 0.9853195

n= 8000 2.1039044

mergesort

n= 2000 0.9249551

n= 4000 1.7947224000000004

n= 8000 3.9287744999999994

Sorted (Python's built-in sorted)
n= 2000 0.0193020999999991

n= 4000 0.043065200000000914

n= 8000 0.09296229999999994 (I think we have a winner!)

• The results speak for themselves. Conclusions?
56

A Note on Space (memory) Complexity

57

• A measure of how much memory the algorithm needs to allocate
• not including memory allocated for the input of the algorithm

• Assuming memory can be reused if needed, this is the maximal amount
of memory needed at any time point during the algorithm's execution

• Compare to time complexity, which relates to the cumulative amount
of operations made along the algorithm's execution

algorithm instructions

memory
taken

max = space complexity

Space Complexity and Recursion

• Recursion depth has an implication on the space (memory)
complexity, as each recursive call requires opening a new
environment in memory.

• At each recursive call we consider the space allocation
requirements, just as we did earlier in the course.
For example:
• copying (parts of) the input
• list / string slicing
• using + operator for lists (as opposed to += or lst.append)

• To analyze the space complexity of a recursive function, we
consider how much memory is required in the deepest leaf

59

Comic Relief *

Cover of Ummagumma, a double album by Pink Floyd, released in 1969.
Taken from Wikipedia

אנו מזמינים אתכם לשלוח לנו הצעות לתמונות שיופיעו על שקפים אלו לאורך הסמסטר*

Towers of Hanoi

61

And the Monster of Hanoi

Towers of Hanoi

62

(figure from Wikipedia)

Towers of Hanoi is a well-known mathematical
puzzle, and no class on recursion, including this
one (a recursive claim in itself :-)) , is complete
without discussing it.

Towers of Hanoi - Origin

The puzzle was invented by the French mathematician Édouard
Lucas in 1883. There is a story about an Indian temple in Kashi
Vishwanath which contains a large room with three time-worn
posts in it surrounded by 64 golden disks. Brahmin priests, acting
out the command of an ancient prophecy, have been moving
these disks, in accordance with the immutable rules of the
Brahma, since that time. The puzzle is therefore also known as
the Tower of Brahma puzzle. According to the legend, when the
last move of the puzzle will be completed, the world will end. It
is not clear whether Lucas invented this legend or was inspired
by it.

63

(text from Wikipedia)

Towers of Hanoi - Description
• There are three rods, named A, B, C, and n disks of

different sizes which can be placed onto any rod.

• The puzzle starts with all n disks in a stack in
ascending order of size on one rod, say A, so that
the smallest is at the top (see figure).

64

(figure from Wikipedia)

Towers of Hanoi: Rules of Game

• The objective of the puzzle is to move the entire stack of all
n disks to another rod, say C, obeying the following rules:

• Only one disk may be moved at a time.

• Each move consists of taking the upper disk from one of the rods
and sliding it onto another rod, on top of the other disks that may
already be present on that rod.

• No disk may be placed on top of a smaller disk.

65

(figure and some text
from Wikipedia)

Towers of Hanoi: Recursive View
• In order to think about a recursive solution, we should first have

a recursive definition of a Hanoi tower:
• it is either empty,
• or it is a tower on top of a larger disk (larger than all the disks

in the tower on top).

Schematically:

66

A tower of n-1 disks

A larger disk

This is the base case

Another possibility is
to let the base case be
a tower of one disk

Towers of Hanoi: The algorithm

• We can now describe a recursive algorithm to move a
stack of n disks from rod A to rod C using rod B as a
helping rod.

• In the base case, when n=0, there is nothing to do.

• If we chose n=1 as the base case, then the base case would
be to move the single rod from A to C.

• The non- base case (n>0) will be shown in the next slide.

67

Towers of Hanoi: Recursive Algorithm

68

A B C

Move (recursively) top tower from A to B using C as helping rod

Move largest disk from A to C

Move (recursively) top tower from B to C using A as helping rod

Helping
rod

Helping
rod

Towers of Hanoi: Another Picture

69 A

Move (recursively) top tower from
A to B using C as helping rod

Move (recursively) top tower from
B to C using A as helping rod

Move largest disk from A to C

B C

Towers of Hanoi: Pseudo-Code

Input: number of disks, n
Output: sequence of moves needed

to transfer n disks from A→C, using B as a “helping rod"

Algorithm:
• If n = 0, there is nothing to do.
• Otherwise (namely n > 0):

(1) Move* n-1 disks from A→B, using C as a “helping rod"
(2) Move the largest disk (numbered n) directly from A→C
(3) Move* n-1 disks from B→C, using A as a “helping rod"

70

*recursively

Correctness of the Recursive Solution

• At no stage in the algorithm execution no rules are
violated:

• During the entire stage (1), disk n stays put on rod A. As it was the
biggest of all n disks, no rule will be violated if some of the n-1
disks are placed on top of it during the recursion in (1).

• In step (2), all n-1 smaller disks are on rod B, so moving disc n
directly from rod A to rod C is legal.

• The argument for step (3) is identical to the argument for step (1).

71

Towers of Hanoi: Python Code

• We write a function of four arguments: n,start,via,target.

• The first argument, n, is the number of discs. The next three arguments are
the three rods' "names", given the default values "A", "B", and "C".

• The function prints the moves and does not return anything.

• Question: what is the base case here (it appears indirectly in the code).

72

def HanoiTowers(n, start="A", via="B", target="C"):

""" Prints a list of steps to move a stack

of n disks from rod "start" to rod "target"

employing intermediate rod "via"

"""

if n>0:

HanoiTowers(n-1, start, target, via)

print("Move disk", n, "from", start, "to", target)

HanoiTowers(n-1, via, start, target)

Towers of Hanoi: Running the Code
>>> HanoiTowers(1)

Move disk 1 from A to C

>>> HanoiTowers(2)

Move disk 1 from A to B

Move disk 2 from A to C

Move disk 1 from B to C

>>> HanoiTowers(3)

Move disk 1 from A to C

Move disk 2 from A to B

Move disk 1 from C to B

Move disk 3 from A to C

Move disk 1 from B to A

Move disk 2 from B to C

Move disk 1 from A to C

73

Towers of Hanoi: Running the Code
>>> HanoiTowers(1, "A", "B", "C")

disk 1 from A to C

74

1

A → C (via B)

0

A → B (via C)

0

B→ C (via A)
disk 1

from A

to C

Towers of Hanoi: Running the Code
>>> HanoiTowers(2, "A", "B", "C")

disk 1 from A to B

disk 2 from A to C

disk 1 from B to C

75

1

A → B (via C)

0

A → C (via B)

0

C→ B (via A)
disk 1

from A

to B

2

A → C (via B)

disk 2

from A

to C

1

B → C (via A)

0 0

disk 1

from B

to C

B → A (via C) A→ C (via B)

Towers of Hanoi: Running the Code
>>> HanoiTowers(3, "A", "B", "C")

disk 1 from A to C

disk 2 from A to B

disk 1 from C to B

disk 3 from A to C

disk 1 from B to A

disk 2 from B to C

disk 1 from A to C

76

1

A → C (via B)

0 0

disk 1

from A

to C

2

A → B (via C)

disk 2

from A

to B

1

C → B (via A)

0 0

disk 1

from C

to B

1

B → A (via C)

0 0

disk 1

from B

to A

2

B → C (via A)

disk 2

from B

to C

1

A → C (via B)

0 0

disk 1

from A

to C

3

A → C (via B)

disk 3

from A

to C

Towers of Hanoi: Running the Code
HanoiTowers(n, "A", "B", "C")

77

n-1

A → B (via C)

disk n-1

from A

to B

1

0 0

disk 1

from __

to __

n-1

B → C (via A)

disk n-1

from B

to C

1

0 0

disk 1

from __

to __

n

A → C (via B)

disk n

from A

to C

1

0 0

disk 1

from __

to __

1

0 0

disk 1

from __

to __

Towers of Hanoi: Number of Moves

• The time complexity of our solution equals to the number of moves (as
each iteration takes O(1) time)

• Let us denote by 𝐻(𝑛) the number of moves required to solve an 𝑛 disk
instance of the puzzle.

• In the recursive solution outlined above, to solve an 𝑛 disks instance we
solve two instances of 𝑛 − 1 disks, plus one direct move. This gives us the
recursive relation

𝐻(0) = 0

For 𝑛 > 0, 𝐻(𝑛) = 2 ∙ 𝐻(𝑛 − 1) + 1

whose solution is 𝐻(𝑛) = 2𝑛 − 1 (You should be able to verify the last
equality, using recursion trees or induction.)

• The recursion depth here is “just” 𝑂(𝑛). But the size of the recursion tree
is 𝑂(2𝑛), which is exponential in 𝑛. This is also the time complexity of the
algorithm.

78

Optimality of Number of Moves

• Hey, wait a minute. 𝐻(𝑛) = 2𝑛 − 1 is the number
of moves in the solution presented above. Can't
we find a more efficient solution?

• This is very good thinking in general.

• But in this case, we can argue that 𝐻(𝑛) = 2𝑛 − 1
moves are required from any solution strategy. (of
course, more inefficient strategies do exist).

• Can you explain why?

79

80

Comic Relief *

אני מזמין אתכם לשלוח לי הצעות לתמונות שיופיעו על שקפים אלו לאורך הסמסטר*

"הרקורסיותמועדון " הפייסבוקמתוך עמוד

“Monster of Hanoi” *

• Suppose a monster demanded to know what the (397+ 381)‘th
move in an 𝑛 = 200 disk Towers of Hanoi puzzle is, or else

81 * This term is common only within our course…

“Monster of Hanoi”
• Suppose a monster demanded to know what the (397+ 381)‘th

move in an 𝑛 = 200 disk Towers of Hanoi puzzle is, or else

• Having seen and even understood the material, you realize that
either expanding all 𝐻(200) = 2200 − 1 moves, or even just the
first 397+ 381, is out of computational reach in any conceivable
future, and the monster should try its luck elsewhere.

• You eventually decide to solve this new problem. The first step
towards taming the monster is to give the new problem a name:

Hanoi_move(n, k, start="A", via="B", target="C")

82

“Monster of Hanoi” – small example

>>> HanoiTowers(3)

Move disk 1 from A to C

Move disk 2 from A to B

Move disk 1 from C to B

Move disk 3 from A to C

Move disk 1 from B to A

Move disk 2 from B to C

Move disk 1 from A to C

83

22 − 1

22 − 1

23 − 1move no. 22

1

2

3

4

5

6

7

“Monster of Hanoi” – small example

>>> HanoiTowers(3)

Move disk 1 from A to C

Move disk 2 from A to B

Move disk 1 from C to B

Move disk 3 from A to C

Move disk 1 from B to A

Move disk 2 from B to C

Move disk 1 from A to C

• If 1 ≤ 𝑘 < 2𝑛−1 the move we are looking for is within the first
part.

84

22 − 1

1

2

3

4

5

6

7

“Monster of Hanoi” – small example

>>> HanoiTowers(3)

Move disk 1 from A to C

Move disk 2 from A to B

Move disk 1 from C to B

Move disk 3 from A to C

Move disk 1 from B to A

Move disk 2 from B to C

Move disk 1 from A to C

• If 𝑘 = 2𝑛−1 this is the move we want.

85

move no. 22

1

2

3

4

5

6

7

“Monster of Hanoi” – small example

>>> HanoiTowers(3)

Move disk 1 from A to C

Move disk 2 from A to B

Move disk 1 from C to B

Move disk 3 from A to C

Move disk 1 from B to A

Move disk 2 from B to C

Move disk 1 from A to C

• If 2𝑛−1 < 𝑘 < 2𝑛 the move is within the third part
- In this case we want the 𝑘 − 2𝑛−1 ‘th move of this part.
- For example, the 𝑘 = 6’th move is the 6 − 22 = 2nd move in this part.

86

22 − 1

1

2

3

4

5

6

7

“Monster of Hanoi” with Recursion
• To compute the 𝑘-th move in the an 𝑛 disk Tower of Hanoi puzzle, we

recall the solution of the Tower of Hanoi puzzle, and think recursively:

• The solution to HanoiTowers takes 2𝑛 − 1 steps altogether
(so 1 ≤ 𝑘 ≤ 2𝑛 − 1), and consists of three (unequal) parts:

1. In the first part, which takes 2𝑛−1 − 1 steps, we move 𝑛 − 1 disks.
If 1 ≤ 𝑘 < 2𝑛−1 the move we are looking for is within this part.

2. In the second part, which takes exactly one step, we move disk
number 𝑛. If 𝑘 = 2𝑛−1 this is the move we want.

3. In the last part, which again takes 2𝑛−1 − 1 steps, we again move
𝑛 − 1 disks. If 2𝑛−1 < 𝑘 < 2𝑛 the move is within this part

- In this case we want the 𝑘 − 2𝑛−1 ‘th move of this part

87

Hanoi Monster - Code
def Hanoi_move(n, k, start="A", via="B", target="C"):

""" Finds the k-th move in an Hanoi Towers instance with n disks.

Uses binary search on the sequence of steps

"""

assert k>0 and k<2**n # k should satisfy 0<k<2**n

if k==2**(n-1): # k is the middle step

print("Move disk", n, "from", start, "to", target)

elif k < 2**(n-1):

Hanoi_move(n-1, k, start, target, via)

else:

Hanoi_move(n-1, k-2**(n-1), via, start, target)

• Note the changing roles of the rods, as in the HanoiTowers
function.

88

Recursive Monster Code: Executions

• We first test it on some small cases, which can be verified by running the
HanoiTowers program.

>>> Hanoi_move(3, 1)

Move disk 1 from A to C

>>> Hanoi_move(3, 4)

Move disk 3 from A to C

>>> Hanoi_move(3, 6)

Move disk 2 from B to C

• Once we are satisfied with this, we solve the monster's question.

>>> hanoi_move(200, 3**97+381)

Move disk 11 from B to C' # saved from monster!

89

>>> HanoiTowers(3)

Move disk 1 from A to C

Move disk 2 from A to B

Move disk 1 from C to B

Move disk 3 from A to C

Move disk 1 from B to A

Move disk 2 from B to C

Move disk 1 from A to C

Recursive Monster Solution
and Binary Search

• The recursive Hanoi_move makes at most one recursive call
each time.

• The way it “homes" on the right move employs the already
familiar paradigm of binary search:

• it first determines if move number k is exactly the middle move in the
n disk problem. If it is, then by the nature of the problem it is easy to
exactly determine the move.

• If not, it determines if

• the move is in the first half of the moves‘ sequence or

• The move is in the second half,

• and makes a recursive call with the correct permutation of rods (in the
latter case also k should change).

90

Recursive Monster Solution
- Complexity

• Each time we decrease the size of the problem by about half

• 2𝑛 − 1 ⇒ 2𝑛−1 − 1 ⇒ 2𝑛−2 − 1 ⇒ … ⇒ 21 − 1

• The number of steps is linear in 𝑛 (and not in 2𝑛 − 1, the total
length of the sequence of moves).

• Each step requires 𝑂(1) time, so the complexity is 𝑂(𝑛).

• Another way to look at it – we use binary search on a search
space of size 2𝑛 − 1. So, the time complexity is
𝑂(log(2𝑛 − 1)) = 𝑂 𝑛 .

91

	Slide 1: Extended Introduction to Computer Science CS1001.py
	Slide 2: מבנה ונושאי הקורס (באדום - חומר שירד בשל קיצור הסמסטר)
	Slide 3
	Slide 4: Recursion: Plan
	Slide 5: Recursion: Definition and First Example
	Slide 6: What Happens at Run Time?
	Slide 7: Fibonacci Numbers
	Slide 8: Recursion Trees - Order of Execution
	Slide 9: Back to Sorting
	Slide 10: Quicksort - Description
	Slide 11: Quicksort - Description (cont.)
	Slide 12: Quicksort: A Graphical Depiction
	Slide 13: Quicksort: Python Code
	Slide 14: Implementation Comment: The Use of List Comprehension
	Slide 16: Quicksort: Complexity
	Slide 17: Worst-Case Analysis
	Slide 18: Worst-Case Analysis (cont.)
	Slide 19: Worst-Case Analysis (final)
	Slide 20: Complexity using Recurrence Relations
	Slide 21: Best-Case Analysis - Example
	Slide 22: Best-Case Analysis
	Slide 23: Complexity using Recurrence Relations
	Slide 24: Quicksort: Average Complexity
	Slide 25: Deterministic Quicksort
	Slide 26: Quicksort: Pivot Selection, cont.
	Slide 30
	Slide 31: Merge-Sort
	Slide 32: Merging Sorted Lists (reminder)
	Slide 33: Merge-Sort: Description
	Slide 36: Merge-Sort: Python Code
	Slide 37: Merge-Sort: Python Code
	Slide 38: Merge-Sort: example
	Slide 39: Merge-Sort: example
	Slide 40: Merge-Sort: example
	Slide 41: Merge-Sort: example
	Slide 42: Merge-Sort: example
	Slide 43: Merge-Sort: example
	Slide 44: Merge-Sort: example
	Slide 45: Merge-Sort: example
	Slide 46: Merge-Sort: example
	Slide 47: Merge-Sort: example
	Slide 48: Merge-Sort: example
	Slide 49: Merge-Sort: example
	Slide 50: Merge-Sort: example
	Slide 51: Merge-Sort: example
	Slide 52: Merge-Sort: Recursion Tree
	Slide 53: Merge Sort: Complexity Analysis
	Slide 54: Merge Sort: Complexity Analysis
	Slide 55: A Three-Way Race
	Slide 56: A Three-Way Race (time in seconds)
	Slide 57: A Note on Space (memory) Complexity
	Slide 58: Space Complexity and Recursion
	Slide 59
	Slide 61: Towers of Hanoi
	Slide 62: Towers of Hanoi
	Slide 63: Towers of Hanoi - Origin
	Slide 64: Towers of Hanoi - Description
	Slide 65: Towers of Hanoi: Rules of Game
	Slide 66: Towers of Hanoi: Recursive View
	Slide 67: Towers of Hanoi: The algorithm
	Slide 68: Towers of Hanoi: Recursive Algorithm
	Slide 69: Towers of Hanoi: Another Picture
	Slide 70: Towers of Hanoi: Pseudo-Code
	Slide 71: Correctness of the Recursive Solution
	Slide 72: Towers of Hanoi: Python Code
	Slide 73: Towers of Hanoi: Running the Code
	Slide 74: Towers of Hanoi: Running the Code
	Slide 75: Towers of Hanoi: Running the Code
	Slide 76: Towers of Hanoi: Running the Code
	Slide 77: Towers of Hanoi: Running the Code
	Slide 78: Towers of Hanoi: Number of Moves
	Slide 79: Optimality of Number of Moves
	Slide 80
	Slide 81: “Monster of Hanoi” *
	Slide 82: “Monster of Hanoi”
	Slide 83: “Monster of Hanoi” – small example
	Slide 84: “Monster of Hanoi” – small example
	Slide 85: “Monster of Hanoi” – small example
	Slide 86: “Monster of Hanoi” – small example
	Slide 87: “Monster of Hanoi” with Recursion
	Slide 88: Hanoi Monster - Code
	Slide 89: Recursive Monster Code: Executions
	Slide 90: Recursive Monster Solution and Binary Search
	Slide 91: Recursive Monster Solution - Complexity

