
Extended Introduction to Computer Science
CS1001.py

Recursion (cont. cont.)
- Memoization

* Slides based on a course designed by Prof. Benny Chor

Chapter E
Lecture 11

Michal Kleinbort, Amir Rubinstein

School of Computer Science
Tel-Aviv University

Fall Semester 2023-24
http://tau-cs1001-py.wikidot.com

http://tau-cs1001-py.wikidot.com/

Recursion: Plan

• Definition and basic examples
• Fibonacci

• factorial

• Recursive binary search

• Sorting
• Quick-Sort

• Merge-Sort

• Towers of Hanoi (and the “monster of Hanoi”)

• Improving recursion with memoization

• An example from Game theory – Chomp! (removed this semester)
2

You Are Here

Computing Fibonacci Numbers

• We coded Fibonacci numbers, using recursion, as following:

def fibonacci(n):

if n<=1:

return 1

else:

return fibonacci(n-1) + fibonacci(n-2)

• But surely nothing could go wrong with such simple and
elegant code...

• To investigate this, let us explore the running time of
fibonacci on 𝑛 = 30, 35, 40, 45,…

4

Recursion Trees (reminder)
• Recursion trees are a common visual representation of a

recursive process. For example, here is the recursion tree for
fibonacci, for n=6:

• Even for 𝑛 = 6 we have the same values computed over and
over. This is highly wasteful and causes a huge overhead.

5

Fibonacci Time Complexity
• Time complexity – overall number of operations in the whole tree

6

• Length of shortest path from root to leaf: ~
𝑛

2

• Length of longest path from root to leaf : ~𝑛

• Let 𝑠 denote the number of nodes in the tree. Then:

2
n
= 2

n
2 ≤ s ≤ 2n

Tree depth
= 𝑛 − 1
= 𝑂(𝑛)

20 nodes

21 nodes

22 nodes

23 nodes

< 24 nodes
< 25 nodes

< 26 − 1 nodes

Fibonacci Time Complexity
• Time complexity – overall number of operations in the whole tree

7

• We have < 2𝑛 − 1 nodes in the tree

• Each node takes O(1) operations (disregarding the size of the numbers being
added)

• Thus, time complexity to compute the 𝑛’th Fibonacci number is 𝑂(2𝑛) (not tight)

• Tight bound is Θ
1+√5

2

𝑛

(without proof)

Tree depth
= 𝑛 − 1
= 𝑂(𝑛)

20 nodes

21 nodes

22 nodes

23 nodes

< 24 nodes
< 25 nodes

< 26 − 1 nodes

Actual Time Measurement

• We have written the function elapsed, that measures the CPU time taken
to execute a given expression (given as a string) repeat times.

• It returns the result in seconds.
• Note that the code first imports the time module, and uses the built-in

eval function (this function invokes the interpreter).

import time # imports the Python time module

def elapsed(expression, repeat=1):

t1 = time.perf_counter()

for i in range(repeat):

eval(expression)

t2 = time.perf_counter()

return t2-t1

8

Actual Time Measurement: Example

>>> elapsed("sum(range(10**7))")

0.33300399999999897

>>> elapsed("sum(range(10**8))")

3.362785999999998

>>> elapsed("sum(range(10**9))")

34.029920000000004

9

Fibonacci Time Measurements
>>> elapsed("fibonacci(30)")

0.31555

>>> elapsed("fibonacci(35)")

3.4169379999999996

>>> elapsed("fibonacci(40)")

38.288004

>>> elapsed("fibonacci(45)")

432.662887 # over 7 minutes !!

• These results demonstrate the exponential running time of our code (but
they do not replace the time complexity analysis).

10

Intuition for Improving Efficiency

• Instead of computing each call from scratch, the value for each
input can be computed just once. Rather than re-computing it,
we will fetch the value from memory, when needed.

• The technique of storing values instead of re-computing them
is called memoization (resembles the term memorization).

• In other contexts, this technique is often used as part of
dynamic programming (will be studies in the Algorithms
course).

14

Fibonacci: Recursive Code with Memoization

• We will use a dictionary named fib_dict, will contain the Fibonacci numbers
already computed. We initialize the dictionary with fib_dict = {0:1, 1:1}.

• fibonacci2 is an envelope function, which calls the recursive fib2.

def fibonacci2(n):

""" Envelope function for Fibonacci,

employing memoization in a dictionary """

fib_dict = {0:1, 1:1} # initial dictionary

return fib2(n, fib_dict)

def fib2(n, fib_dict):

if n not in fib_dict:

res = fib2(n-1, fib_dict) + fib2(n-2, fib_dict)

fib_dict[n] = res

return fib_dict[n]

• Let us again explore the running time of fibonacci2 on 𝑛 = 30, 35, 40, 45, …

15

Time Measurements
• This small change implies a huge performance difference:

>>> elapsed("fibonacci(35)")

8.245295905878606

>>> elapsed("fibonacci2(35)")

9.053997947143898e-05

>>> elapsed("fibonacci(40)")

92.6057921749773

>>> elapsed("fibonacci2(40)")

9.909589798251517e-05

>>> elapsed("fibonacci(45)")

432.662887 # over 7 minutes !!

>>> elapsed("fibonacci2(45)")

0.00011015042046658152
16

Time Complexity of Code with Memoization

• How does the recursion tree for the code with memoization look like?

• What is its depth?

• What is the time complexity of the function?

• In class, on board.

17

Time Complexity of Code with Memoization

• The recursion tree of fib2:

18

𝑛 − 1

𝑛

2

𝑛 − 2

1

𝑛 − 2

0

Expected time complexity: 𝑇 𝑛 = 𝑂 𝑛

• At each node the amount of work not including recursive calls is expected
𝑂 1 , due to the the dictionary operations.

𝑛 − 3

𝑛 − 4

Diagnostic Printing
def fib2(n, fib_dict):

if n not in fib_dict:

print("start n =", n, fib_dict)

res = fib2(n-1, fib_dict) + fib2(n-2, fib_dict)

fib_dict[n] = res

print("end n =", n, fib_dict)

return fib_dict[n]

19

>>> fibonacci2(6)

start n = 6 {0: 1, 1: 1}

start n = 5 {0: 1, 1: 1}

start n = 4 {0: 1, 1: 1}

start n = 3 {0: 1, 1: 1}

start n = 2 {0: 1, 1: 1}

end n = 2 {0: 1, 1: 1, 2: 2}

end n = 3 {0: 1, 1: 1, 2: 2, 3: 3}

end n = 4 {0: 1, 1: 1, 2: 2, 3: 3, 4: 5}

end n = 5 {0: 1, 1: 1, 2: 2, 3: 3, 4: 5, 5: 8}

end n = 6 {0: 1, 1: 1, 2: 2, 3: 3, 4: 5, 5: 8, 6: 13}

• See also this useful animation:
https://www.cs.usfca.edu/~galles/visualization/DPFib.html

https://www.cs.usfca.edu/~galles/visualization/DPFib.html

Pushing Recursion Depth to the Limit
>>> fibonacci2(990)

571829406815633979529643697006273045106845980748991112071

673038743714031497887739023091610769764627307772654802298

784361803421747114571265690519449915873452164193174293407

940201977897716937097604164288130909

>>> fibonacci2(1000)

Traceback (most recent call last):

removed most of the error message

fib dict[n] = fibonacci2(n-1)+fibonacci2(n-2)

RuntimeError: maximum recursion depth exceeded

• What the $#*& is going on?

22

Python Recursion Depth
• While recursion provides a powerful and very convenient means to

designing and writing code, this convenience is not for free.

• Each time we call a function, Python (and every other programming
language) adds another "frame" (memory environment) to the
current one. This entails allocation of memory for local variables,
function parameters, etc.

• Nested recursive calls, like the one we have in fibonacci2, build a
deeper and deeper ”stack” of such frames.

• Most programming languages' implementations limit this recursion
depth. Specifically, Python has a nominal default limit of 1,000 on
recursion depth. However, the user (you, that is), can modify the limit
(within reason, of course).

23

Changing Python Recursion Depth

• You can import the Python sys library, find out what the limit is,
and also change it.

>>> import sys

>>> sys.getrecursionlimit() # find recursion depth limit

1000

>>> sys.setrecursionlimit(20000) # change limit to 20,000

>>> fibonacci2(3000)

664390460366960072280217847866028384244163512452783259405579765542621214

1612192573964498109829998203911322268028094651324463493319944094349260190

4534272374918853031699467847355132063510109961938297318162258568733693978

4373527897555489486841726131733814340129175622450421605101025897173235990

66277020375643878651753054710112374884914025268612010403264702514559895667

590213501056690978312495943646982555831428970135422715178460286571078062467

510705656982282054284666032181383889627581975328137149180900441221912485637

512169481172872421366781457732661852147835766185901896731335484017840319755

9969056510791709859144173304364898001 # hurray

24

Reversed Order of Calls

• As you have probably understood, Python evaluates expressions
from left to right (except for when otherwise dictated by
precedence of operators).

• Suppose we changed the order of calls inside fibonacci2: first we
call n-2, then n-1.

def fib2_reverse(n, fib_dict):

if n not in fib_dict:

res = fib2_reverse(n-2, fib_dict) + fib2_reverse(n-1, fib_dict)

fib_dict[n] = res

return fib_dict[n]

• HW: How does the recursion tree look like now? Recursion
depth? Time complexity?

25

Fibonacci: Iterative (Non Recursive) Solution

• We saw that memoization improved the performance of computing
Fibonacci numbers dramatically (the function fibonacci2).

• We now show that to compute Fibonacci numbers, the recursion can
be eliminated altogether.

• This time, we will maintain a list data structure, denoted fibb. Its
elements will be fibb[0], fibb[1], fibb[2], ..., fibb[n] (𝑛 + 1 elements
altogether for computing 𝐹𝑛).
• Upon generating the list, all its values are set to 0.

• Next, we initialize the values fibb[0] = fibb[1] = 1.

• And then we simply iterate, determine the value of the 𝑘-th element, fibb[k],
after fibb[k-2], and fibb[k-1] were already determined.

• No recursion implies no nested function calls, hence reduced
overhead (and no need to confront Python's recursion depth limit :-).27

Iterative Fibonacci Solution: Python Code

def fibonacci3(n):

""" Iterative Fibonacci ,

keeps all values in a list """

if n<=1:

return 1

else:

fib_list = [None for i in range(n+1)]

fib_list[0] = fib_list[1] = 1 # initialize

for k in range(2, n+1):

fib_list[k] = fib_list[k-1] + fib_list[k-2]

return fib_list[n]

28

Recursive vs. Iterative: Timing

• Let us now do some performance comparisons:

fibonacci2 vs. fibonacci3:

>>> import sys

>>> sys.setrecursionlimit(20000)

>>> elapsed("fibonacci2(2000)")

0.003454221497536104

>>> elapsed("fibonacci3(2000)")

0.0008148609599825107

• As we mentioned already, recursive calls require maintenance
operations and memory allocation ("frames"), thus tend to
have a negative influence on running time, compared to the
analogous iterative solution.

29

Iterative Fibonacci Solution Using O(1) Memory

• No, we are not satisfied yet.

• Think about the algorithm's execution flow. Suppose we have
just executed the assignment fib_list[4] = fib_list[3] + fib_list[2].
This entry will subsequently be used to determine fib_list[5]
and then fib_list[6]. But then we make no further use of
fib_list[4]. It just lies, basking happily, in the memory.

• The following observation holds in "real life" as well as in the
"computational world":

Time and space (memory, at least a computer's memory) are
important resources that have a fundamental difference: Time
cannot be re-used, while memory (space) can be.

30

Iterative Fibonacci Reusing Memory

• At any point in the computation, we can maintain just the last
two values, use them to compute the next one, and get rid of
the “earlier” one.

• In practice, we will maintain two variables, prev and curr. Every
iteration, those will be updated. Normally, we would need a
third variable next for keeping a value temporarily. However
Python supports the "simultaneous" assignment of multiple
variables (first the right hand side is evaluated, then the left
hand side is assigned).

31

Iterative Fibonacci Solution: Python Code

def fibonacci4(n):

""" Fibonacci in O(1) memory """

if n<=1:

return 1 # base case

else:

prev = 1

curr = 1

for i in range(n-1): # n-1 iterations (count carefully)

curr, prev = prev+curr, curr

simultaneous assignment

return curr

>>> for i in range(0,7): # sanity check

print(fibonacci4(i))

1

1

2

3

5

8

13

32

Iterative Fibonacci Code, Reusing Memory: Performance

• Reusing memory can surely help if memory consumption is an issue.
Does it help with runtime as well?

>>> elapsed("fibonacci3(100000)",number=10)

6.150758999999999

>>> elapsed("fibonacci4(100000)",number=10)

1.8084930000000004

• We see that there is about 50-70% saving in time, although both
solutions work in O(n) time (assuming arithmetic operations take O(1)).
Not dramatic, but significant in certain circumstances.

• The fibonacci4 function uses O(1) memory vs. the O(n) memory usage of
fibonacci3 (again, disregarding the size of the numbers themselves).

33

Closed Form Formula

• And to really conclude our Fibonacci excursion, we note that there is a closed
form formula for the 𝑛-th Fibonacci number,

𝐹𝑛 =

1+ 5

2

𝑛+1

−
1− 5

2

𝑛+1

5
.

• You can verify this by induction. You will even prove it in the discrete
mathematics course.

• This function seems to have neither recursion nor loops, thus runs in O(1) time,
ignoring arithmetical operations’ complexity. However, there are hidden loops in
the ** operation, and when 𝑛 is large, this is not negligible.

def fibonacci5(n):

return round(((1+5**0.5)**(n+1)-(1-5**0.5)**(n+1))/(2**(n+1)*5**0.5))

34

Closed Form Formula: Code, and Danger
def fibonacci5(n):

return round(((1+5**0.5)**(n+1)-(1-5**0.5)**(n+1))/(2**(n+1)*5**0.5))

sanity check

>>> for i in range(10, 60, 10):

print(i, fibonacci4(i), fibonacci5(i))

10 89 89

20 10946 10946

30 1346269 1346269

40 165580141 165580141

50 20365011074 20365011074

• However, being aware that floating point arithmetic in Python
(and other programming languages) has finite precision, we are
not convinced, and push for larger values:

35

Closed Form Formula: Code, and Danger

• However, being aware that floating point arithmetic in Python
(and other programming languages) has finite precision, we are
not convinced, and push for larger values:

>>> for i in range(40, 90):

if fibonacci4(i) != fibonacci5(i)

print(i, fibonacci4(i), fibonacci5(i))

break

70 308061521170129 308061521170130

Bingo!

36

Reflections: Memoization, Iteration, Memory Reuse

• In the Fibonacci numbers example, all the techniques above proved
relevant and worthwhile performance wise. These techniques won't
always be applicable for every recursive implementation of a function.

• Consider quicksort as a specific example. In any specific execution, we
never call quicksort on the same set of elements more than once (think
why this is true).

• So memoization is not applicable to quicksort. And replacing recursion by
iteration, even if applicable, may not be worth the trouble and surely will
result in less elegant and possibly more error prone code.

• Even if these techniques are applicable, the transformation is often not
automatic, and if we deal with small instances where performance is not
an issue, such optimization may be a waste of effort.

37

	Slide 1: Extended Introduction to Computer Science CS1001.py
	Slide 2: Recursion: Plan
	Slide 4: Computing Fibonacci Numbers
	Slide 5: Recursion Trees (reminder)
	Slide 6: Fibonacci Time Complexity
	Slide 7: Fibonacci Time Complexity
	Slide 8: Actual Time Measurement
	Slide 9: Actual Time Measurement: Example
	Slide 10: Fibonacci Time Measurements
	Slide 14: Intuition for Improving Efficiency
	Slide 15: Fibonacci: Recursive Code with Memoization
	Slide 16: Time Measurements
	Slide 17: Time Complexity of Code with Memoization
	Slide 18: Time Complexity of Code with Memoization
	Slide 19: Diagnostic Printing
	Slide 22: Pushing Recursion Depth to the Limit
	Slide 23: Python Recursion Depth
	Slide 24: Changing Python Recursion Depth
	Slide 25: Reversed Order of Calls
	Slide 27: Fibonacci: Iterative (Non Recursive) Solution
	Slide 28: Iterative Fibonacci Solution: Python Code
	Slide 29: Recursive vs. Iterative: Timing
	Slide 30: Iterative Fibonacci Solution Using O(1) Memory
	Slide 31: Iterative Fibonacci Reusing Memory
	Slide 32: Iterative Fibonacci Solution: Python Code
	Slide 33: Iterative Fibonacci Code, Reusing Memory: Performance
	Slide 34: Closed Form Formula
	Slide 35: Closed Form Formula: Code, and Danger
	Slide 36: Closed Form Formula: Code, and Danger
	Slide 37: Reflections: Memoization, Iteration, Memory Reuse

