
Extended Introduction to Computer Science
CS1001.py

* Slides based on a course designed by Prof. Benny Chor

Chapter F
Lecture 12

Michal Kleinbort, Amir Rubinstein

School of Computer Science
Tel-Aviv University

Fall Semester 2023-24
http://tau-cs1001-py.wikidot.com

Topics in Number Theory:
Integer Exponentiation

http://tau-cs1001-py.wikidot.com/

נושאים מתוכנניםפרק

A . מודל הזיכרון, פונקציות, לולאות, משפטי תנאי, משתנים,טיפוסי ערכים: תכנות בסיסי•פייתוןיסודות

ופונקציות , למבדאפונקציות , פייתוןדקדוקים פורמליים ותהליך הפירוש של :נושאים נוספים•

"נכון"סגנון תכנות , (זמן ריצה, תחביר)סוגי שגיאות , אקראיות ושימושיה,סדר גבוה

B .ייצוג שלמים בשיטה הבינארית•ייצוג טיפוסי מידע

floating pointייצוג מספרים עם נקודה עשרונית בשיטת •

(ASCII ,Unicode)ייצוג תווים •

C .מיזוג רשימות ממוינות, מיון בחירה, חיפוש בינארי•אלגוריתמים בסיסיים וסיבוכיות

O notation-סיבוכיות ו•
D .רפסון-שיטת ניוטון: בעברמציאת שורש של פונקציה ממשית רציפה בשיטת החציה •חישוב נומרי,

𝜋קירוב ל, ואינטגרליםחישוב נגזרות

E . דוגמאות נוספות, ממואיזציה, מיון מיזוג, מיון מהיר, חיפוש בינארי, י'פיבונאצ, עצרת•רקורסיה

F .טבעית בשיטת העלאה בחזקה•נושאים בתורת המספריםIterated squaring

(המשפט הקטן של פרמה)בדיקת ראשוניות הסתברותית •

להחלפת מפתח סודיDiffie-Hellmanפרוטוקול •

(GCD)מחלק משותף מקסימלי •

G . תכנות מונחה עצמים(OOP) שדות ומתודות, מחלקות•ומבני נתונים

פייתוןרשימות מקושרות והשוואה לרשימות של •

עצי חיפוש בינאריים•

hashטבלאות •

ופונקציות גנרטור(streams)זרמים •

H . אלגוריתם •טקסטCYKרבין-קארפאלגוריתם : בעבר

דחיסת למפל זיו, האפמןדחיסת •

I . נושאים נוספים לפי הזמן, (ממוצע וחציון מקומי)ניקוי רעש , ייצוג תמונה דיגיטלית•ייצוג ועיבוד תמונה

J . האמינגקוד , האמינגמרחק, ביט זוגיות, קוד חזרה, ספרת ביקורת•קודים לגילוי ולתיקון שגיאות

(ייתכנו שינויים)מבנה ונושאי הקורס

2

YOU
ARE
HERE

Topics in Number Theory: Plan

1. Exponentiation of integers – this lecture

2. Primality testing (using Fermat’s “little theorem”)

3. Diffie-Helman secret key exchange

4. Euclid’s GCD (greatest common divisor)

3

Integer Exponentiation: Plan

1. Exponentiation of integers (𝑎𝑏)

• Naive algorithm (inefficient)

• Iterated squaring algorithm (efficient)

• Modular exponentiation (𝑎𝑏 %𝑐)

4

Integer Exponentiation

• Problem definition:
• Input: two integers 𝑎, 𝑏 where 𝑏 ≥ 0
• Output: 𝑎𝑏

• As you know, Python can do this:

>>> print(17**20)

239072435685151324847153

• But we do not settle for a “Python can do it”
solution. We want to explore this ourselves, develop
an efficient algorithm and analyze it

5

Naïve Integer Exponentiation

• The naïve method:
• Compute successive powers 𝑎0, 𝑎1, 𝑎2, 𝑎3, … . , 𝑎𝑏.

• Time complexity?
• For simplicity, we count the number of multiplications needed, ignoring the size

of the numbers multiplied, which increases throughout the process

• Justification (beyond simplicity): this will still allow us to compare this naïve
solution to the improved one, soon to be presented

• We need 𝑏 multiplications. What is the size of 𝑏?

• If 𝑏 has 𝑛 bits, namely 2𝑛−1 ≤ 𝑏 < 2𝑛, this is Θ 2𝑛 multiplications.

• So this solution has exponential time complexity as a function of 𝑛, the size in
bits of the exponent.

6

Naïve Integer Exponentiation

• For example, if 𝑛 = 20, say 𝑏 = 220 − 17, such procedure takes
220 − 17 = 1048559 multiplications.

• If 𝑛 = 60 bits long, say 𝑏 = 260 − 17, such procedure takes

260 − 17 = 18446744073709551599 multiplications.

• A computer capable of 1010 multiplication per second would still need over
58 years to complete the computation!

• So this exponential-time complexity solution is completely infeasible even
for moderate size numbers (with merely a few tens of bits).

7

Naïve Integer Exponentiation in Python

def naive_power(a,b):

""" Computes a**b using all successive powers.

Assume a,b are integers, b>=0 """

result = 1 # a**0

for i in range(0,b): # b iterations

result *= a

return result

>>> naive_power(3, 0)

1

>>> naive_power(3, 2)

9

>>> naive_power(3, 10)

59049

>>> naive_power(3, 100)

515377520732011331036461129765621272702107522001

>>> naive_power(3, -10)

1

Take a look at the code and see if you understand it, and specifically why
raising 3 to -10 returned 1.

8

Iterated Squaring (A concrete example first)

• Suppose we want to compute 𝑎67.

• if 𝑏 is odd: 𝑎𝑏 = 𝑎𝑏−1 ⋅ 𝑎

else 𝑎𝑏 = 𝑎𝑏/2 ⋅ 𝑎𝑏/2 = 𝑎𝑏/2
2

• Number of multiplications?
• We have 6 squaring, each takes just a

single multiplication: 𝑎𝑛 = 𝑎𝑛/2 ⋅ 𝑎𝑛/2

• Plus we have 2 additional multiplications
by 𝑎.

• All in all, we need just 6 + 2 = 8
multiplications. Way better than the
67 multiplications of the naive method.

9

𝑎67 = 𝑎66 ⋅ 𝑎
= 𝑎33 2 ⋅ 𝑎
= 𝑎32 ⋅ 𝑎 2 ⋅ 𝑎

= 𝑎16 2 ⋅ 𝑎
2
⋅ 𝑎

= 𝑎8 2 2
⋅ 𝑎

2

⋅ 𝑎

= 𝑎4 2 2
2

⋅ 𝑎

2

⋅ 𝑎

= 𝑎2 2 2
2

2

⋅ 𝑎

2

⋅ 𝑎

= 𝑎 2 2
2

2
2

⋅ 𝑎

2

⋅ 𝑎

Iterated Squaring, Recursive Code -
Take 1

10

def power_rec1(a,b):

''' Computes a**b using iterated squaring, recursively.

Assume a,b are integers, b>=0 '''

if b==0:

return 1

if b%2 == 1: # b is odd

return power_rec1(a, b-1) * a

else:

return power_rec1(a, b//2) * power_rec1(a, b//2)

if 𝑏 is odd: 𝑎𝑏 = 𝑎𝑏−1 ⋅ 𝑎

else 𝑎𝑏 = 𝑎𝑏/2 ⋅ 𝑎𝑏/2 = 𝑎𝑏/2
2

• This implementation calls for improvements in efficiency. Why?

Iterated Squaring, Recursive Code -
Take 2

11

def power_rec2(a,b):

''' Computes a**b using iterated squaring, recursively.

Assume a,b are integers, b>=0 '''

if b==0:

return 1

if b%2 == 1: # b is odd

return power_rec2(a, b-1) * a

else:

res = power_rec2(a, b//2)

return res*res

• We could further improve style, recalling that when 𝑏 is even:

𝑎𝑏 = 𝑎𝑏/2
2
= 𝑎2 𝑏/2

if 𝑏 is odd: 𝑎𝑏 = 𝑎𝑏−1 ⋅ 𝑎

else 𝑎𝑏 = 𝑎𝑏/2 ⋅ 𝑎𝑏/2 = 𝑎𝑏/2
2

Iterated Squaring, Recursive Code -
Take 3

12

def power_rec3(a,b):

''' Computes a**b using iterated squaring, recursively.

Assume a,b are integers, b>=0 '''

if b==0:

return 1

if b%2 == 1: # b is odd

return power_rec3(a, b-1) * a

else:

return power_rec3(a*a, b//2)

if 𝑏 is odd: 𝑎𝑏 = 𝑎𝑏−1 ⋅ 𝑎

else 𝑎𝑏 = 𝑎𝑏/2 ⋅ 𝑎𝑏/2 = 𝑎𝑏/2
2

= 𝑎2 𝑏/2

• Note: following a recursive call in which 𝑏 is odd, must come a call in
which it is even.

• What are the worst and best cases here?

Iterated Squaring, Recursive Code -
Take 3 – Time Complexity

13

• For both worst and best cases, recursion tree is a “chain” of depth
𝑂(𝑙𝑜𝑔𝑏) = 𝑂(𝑛).

• As we already mentioned, this is not the real time complexity of the
function, since we ignored the time complexity of the arithmetical
operations in each call.

• We have a subtraction (b-1), which takes 𝑂(𝑛) for an 𝑛-bit number.

• We have a floor division by 2 (b//2), which also takes 𝑂(𝑛) for an 𝑛-bit
number (note that this is an exceptions, as division normally takes 𝑂 𝑛2 ,
like multiplication).

• However, as we already mentioned, the multiplications at each step involve
numbers of increasing sizes, and we do not analyze this here (maybe HW).

Iterated Squaring, Iterative Code

14

def power1(a,b):

""" Computes a**b using iterated squaring.

Assume a,b are integers, b>=0 """

result = 1

while b>0:

if b%2 == 1:

result *= a

b = b-1

else:

a = a*a

b = b//2

return result

if 𝑏 is odd: 𝑎𝑏 = 𝑎𝑏−1 ⋅ 𝑎

else 𝑎𝑏 = 𝑎𝑏/2 ⋅ 𝑎𝑏/2 = 𝑎𝑏/2
2

= 𝑎2 𝑏/2

Iterated Squaring: Executions

Let us now run this on a few cases:

>>> power1(3 ,4)

81

>>> power1(5, 5)

3125

>>> power1(2, 10)

1024

>>> power1(2, 30)

1073741824

>>> power1(2, 100)

1267650600228229401496703205376

>>> power1(2, -100)

1

15

Correctness using Loop Invariant

• A loop invariant is some value that remains unchanged between iterations.

• We claim that each time we are about to check the loop condition, the
following invariant holds:

where 𝑎0, 𝑏0 are the initial values of 𝑎, 𝑏 (functions arguments).

• This loop invariant can be proven by induction on the iteration number
(complete proof in the appendix).

• When the loop terminates, 𝑏 = 0.

Conclusion: when the loop terminates, 𝑟𝑒𝑠𝑢𝑙𝑡 ⋅ 𝑎0 = 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑎0
𝑏0

as desired.

16

𝑟𝑒𝑠𝑢𝑙𝑡 ⋅ 𝑎𝑏 = 𝑎0
𝑏0

Loop Invariant
• We can easily check this by adding prints to the code:

…

while b>0:

print("result = ",result, \

" a =", a," b =" ,b, \

" result*(a**b)=", result*a**b)

if b%2 == 1:

…..

>>> power1(3,11)

result = 1 a = 3 b = 11 result*(a**b)= 177147

result = 3 a = 3 b = 10 result*(a**b)= 177147

result = 3 a = 9 b = 5 result*(a**b)= 177147

result = 27 a = 9 b = 4 result*(a**b)= 177147

result = 27 a = 81 b = 2 result*(a**b)= 177147

result = 27 a = 6561 b = 1 result*(a**b)= 177147

177147

• So at least in this example the condition indeed holds every time!

17

18

Comic Relief *

הצעות לתמונות שיופיעו על שקפים אלו לאורך הסמסטרנולאתכם לשלוח םמזמיניואנ*

• Note that we could discard the two lines struck through below.

• This is because following an iteration in which 𝑏 is odd, must come an
iteration in which it is even.

• Plus recall that b//2 rounds down the result.

Iterated Squaring: Simplifying the Code

19

def power1(a,b):

result = 1

while b>0:

if b%2 == 1: # b is odd

result = result*a

b = b-1

else:

a = a*a

b = b//2

return result

A Different View of Iterated Squaring

20

• The resulting implementation provides a different, and interesting
interpretation of our algorithm, which will be explained now.

• The new interpretation relates to 𝑏's representation in binary.

• Note that b//2 actually discards the least significant bit (LSB) of 𝑏.

def power2(a,b):

result = 1

while b>0: # b has more digits

if b%2 == 1: # b is odd

result = result*a

a = a*a

b = b//2 # discard b's LSB

return result

The Binary Interpretation:
A Concrete Example

• Suppose we want to compute 𝑎67.

• We can represent 67 as a sum of powers of 2 (this representation is unique, and
corresponds to the binary representation of 67 (1000011),
• that is 67 = 64 + 2 + 1.

• Our algorithm computes the terms 𝑎(2
𝑖): 𝑎2, 𝑎4, 𝑎8, 𝑎16, 𝑎32, 𝑎64

• And uses (some of) them to compute 𝑎67 = 𝑎64+2+1 = 𝑎64 ∙ 𝑎2 ∙ 𝑎1

• In fact, note that the algorithm uses only those powers of 𝑎 that correspond to

bits in 𝑏 with value 1:

𝑎67 = 𝑎1⋅64 + 0⋅32 + 0⋅16 + 0⋅8 + 0⋅4 + 1⋅2 + 1⋅1

= 𝑎1⋅64 ⋅ 𝑎0⋅32 ⋅ 𝑎0⋅16 ⋅ 𝑎0⋅8 ⋅ 𝑎0⋅4 ⋅ 𝑎1⋅2 ⋅ 𝑎1⋅1

21

The Binary Interpretation:
Generalization of the previous example

• Let 𝑏 be an 𝑛-bit non-negative integer

• namely 2𝑛−1 ≤ 𝑏 < 2𝑛

• In particular 𝑏 = 𝑏𝑛−1…𝑏2𝑏1𝑏0 2 = σ𝑖=0
𝑛−1(𝑏𝑖 ⋅ 2

𝑖)

• e.g. 𝑏 = 6710 = 10000112

• Compute: 𝑎2, 𝑎4, 𝑎8… , 𝑎(2
𝑛−1) (no need for 𝑎(2

𝑛)> 𝑎𝑏)

• Then 𝑎𝑏 = 𝑎σ𝑖=0
𝑛−1 𝑏𝑖⋅2

𝑖
= ς𝑖=0

𝑛−1 𝑎𝑏𝑖⋅2
𝑖
= ς𝑏𝑖=1

𝑎(2
𝑖)

23

𝑎𝑥+𝑦 = 𝑎𝑥 ⋅ 𝑎𝑦

The Binary Interpretation:
Complexity

• Let 𝑏 be an 𝑛-bit non-negative integer

• namely 2𝑛−1 ≤ 𝑏 < 2𝑛

• In particular 𝑏 = 𝑏𝑛−1…𝑏2𝑏1𝑏0 2 = σ𝑖=0
𝑛−1(𝑏𝑖 ⋅ 2

𝑖)

• e.g. 𝑏 = 6710 = 10000112

• Compute: 𝑎2, 𝑎4, 𝑎8… , 𝑎(2
𝑛−1) (no need for 𝑎(2

𝑛)> 𝑎𝑏)

• requires 𝑛 − 1 multiplications

• Then 𝑎𝑏 = 𝑎σ𝑖=0
𝑛−1 𝑏𝑖⋅2

𝑖
= ς𝑖=0

𝑛−1 𝑎𝑏𝑖⋅2
𝑖
= ς𝑏𝑖=1

𝑎2
𝑖

• requires at most 𝑛 − 1 multiplications

• why at most? and how many at least?
24

Complexity Summary: Naïve vs. Iterated Squaring

• Given two integers 𝑎, 𝑏, where 𝑏 ≥ 0 and the size of 𝑏 is 𝑛 bits, namely
2𝑛−1 ≤ 𝑏 < 2𝑛:

• The Naïve algorithm takes 𝑏 multiplications,

which is between 2𝑛−1 and 2𝑛 − 1

• Iterated squaring takes between

𝑛 − 1 and 2(𝑛 − 1) multiplications

• So naïve is exponentially slower than iterated squaring!

• Remark: We counted just “multiplications” here, and ignored the size

of numbers being multiplied, and how many bit operations are

required. This simplifies the analysis but also may deviate significantly
from “the truth”.
25

𝑂 2𝑛

multiplications

𝑂 𝑛
multiplications

Python Implementation - Remarks

• While the abstract iterated squaring algorithm performs at
most 2(𝑛 − 1) multiplications,

our Python code of power2 may perform up to 2𝑛
multiplications (where are the 2 additional ones hiding?)

• This difference is negligible, and can be eliminated by adding
appropriate conditions to the code (which we avoided, to
keep the code simple).

26

Time Measurements for
Naive Squaring vs. Iterated Squaring

• Actual Running Time Analysis:
We'll measure the time needed (in seconds) for computing 3𝑏 for
𝑏 = 2 ∙ 105 , 106 , 2 ∙ 106 using the two algorithms.

>>> elapsed("naive_power(3, 2*10**5)")

2.244201

>>> elapsed("power2(3, 2*10**5)")

0.03179299999999996

>>> elapsed("naive_power(3, 10**6)")

57.696312999999996

>>> elapsed("power2(3, 10**6)")

0.3366879999999952

>>> elapsed("naive_power(3, 2*10**6)")

205.56775500000003

>>> elapsed("power2(3, 2*10**6)")

1.0069569999999999

29

Iterated squaring wins
(big time)!

30

Comic Relief *

אנו מזמינים אתכם לשלוח לנו הצעות לתמונות שיופיעו על שקפים אלו לאורך הסמסטר*

Modular Exponentiation

𝑎𝑏(𝑚𝑜𝑑 𝑐)

31

Huge Numbers
• Using iterated squaring, we can compute 𝑎𝑏 for, say,

𝑏 = 2100 − 17 = 1267650600228229401496703205359.
This will take no more than 200 multiplications, a piece of cake even
for an old, faltering machine.

• A piece of cake? Really? 200 multiplications of what size numbers?

• For 𝑎 = 2 the result of the exponentiation above is 2100 − 16 bits
long! For 𝑎 > 2 the result is even larger!!
• No machine could generate, manipulate, or store such huge numbers.

• Can anything be done? Not really!
• Unless you are ready to consider a closely related problem:

Modular exponentiation: Compute 𝑎𝑏 𝑚𝑜𝑑 𝑐, where 𝑎, 𝑏 ≥ 0, 𝑐 ≥ 2
are all integers. This is the remainder of 𝑎𝑏 when divided by 𝑐.
• In Python, this can be expressed as (𝑎 ∗∗ 𝑏) % 𝑐.

32

Does Modular Exponentiation Have
Any Uses?

Applications using modular exponentiation directly (partial list):

• Randomized primality testing

• Diffie Hellman secret key exchange

• Rivest-Shamir-Adelman (RSA) public key cryptosystem (PKC)

We will discuss the first two topics soon, and leave RSA PKC to
an (elective) crypto course.

33

Modular Exponentiation

• We should still be a bit careful. Computing 𝑎𝑏 first, and only then
taking the remainder mod 𝑐, is not going to help at all.

• Instead, we compute all the squares 𝑚𝑜𝑑 𝑐, namely:
• 𝑎1𝑚𝑜𝑑 𝑐, 𝑎2𝑚𝑜𝑑 𝑐, 𝑎4𝑚𝑜𝑑 𝑐…

• In fact, following every multiplication, we compute the remainder.
We rely on the fact (proof omitted) that for all 𝑎, 𝑏, 𝑐 :

𝑎 ∙ 𝑏 𝑚𝑜𝑑 𝑐 = ((𝑎 𝑚𝑜𝑑 𝑐) ∙ (𝑏 𝑚𝑜𝑑 𝑐)) 𝑚𝑜𝑑 𝑐

• This way, intermediate results never exceed (𝑐 − 1)2, eliminating the
problem of huge numbers.

34

Code for Modular Exponentiation

• We can easily modify our function, power, to handle modular
exponentiation.

def modpower(a,b,c):

""" computes a**b modulo c,

using iterated squaring

"""

result = 1

while b>0:

if b%2 == 1:

result = (result * a) % c

a = (a*a) % c

b = b//2

return result

35

Code for Modular Exponentiation
• A few test cases:

>>> modpower(2,10,100) # sanity check: 210 = 1024

24

>>> modpower(2, 2**100-17, 5**100)

7763470113346743895580721708565743044722675708816681629524142921320613

>>> modpower(17, 2**1000+3**500, 5**100+2)

1119887451125159802119138842145903567973956282356934957211106448264630

36

Built In Modular Exponentiation: pow(a,b,c)

• Guido van Rossum (Python “father”) has not waited for our code, and Python
has a built in function, pow(a,b,c), for efficiently computing ab mod c.

>>> modpower(17, 2**1000+3**500, 5**100+2) \

- pow(17, 2**1000+3**500, 5**100+2)

0

• This is comforting : modpower code and Python pow agree . Phew ...

>>> elapsed("modpower(17, 2**1000+3**500, 5**100+2)", number=1000)

2.280894000000046

>>> elapsed("pow(17, 2**1000+3**500, 5**100+2)", number=1000)

0.7453199999999924

• So our code is about 3 times slower than Python’s buit-in pow.

37

Modular Exponentiation:
Time Complexity Analysis

• Suppose 𝑎, 𝑏, 𝑐 are all 𝑛-bit long integers, 𝑏 ≥ 0 and 𝑐 ≥ 2.

• To compute 𝑎𝑏 𝑚𝑜𝑑 𝑐 using iterated squaring we need at most
2 𝑛 − 1 = 𝑂(𝑛) multiplications, each followed immediately by a modulo
operation

• Since Intermediate multiplicands never exceed 𝑐, each multiplication takes
𝑂(𝑛2) bit operations (using elementary school multiplication as we saw earlier
in the course).

• Each product is smaller than 𝑐2, which has at most 2𝑛 bits, and so computing
the remainder of such product modulo 𝑐 takes another 𝑂(𝑛2) bit operations
(using long division, also studied in elementary school, but we did not see it in
this course).

• All by all, computing 𝑎𝑏 𝑚𝑜𝑑 𝑐 takes 𝑂(𝑛3) bit operations.

38

Appendix

39

Proving Correctness using Induction
We can prove the correctness of the function power1, by showing a loop
invariant – a condition that holds each time we are about to check the
loop condition.

• Base: We show the condition holds before we enter the loop for the first
time.

• Step: we show that if the condition holds before entering the loop for the
𝑖-th time, it will hold when we enter the loop for the (𝑖 + 1)-th time.

• Termination: We also show that the iteration is executed a finite number of
times. This implies that the condition will hold when we exit the loop for the
last time.

Finally, we show that if the condition is satisfied when the execution
terminates, this implies that the code is indeed correct.

Note that such proof is in fact a proof by induction on the number of
times the loop is executed.
40

Proof of Correctness: Base

• Now we want to prove that this is indeed an invariant
condition.

• We claim that each time we are about to check the loop
condition, the following condition holds:

• Base: The first time we enter the loop

𝑟𝑒𝑠𝑢𝑙𝑡 = 1, 𝑎 = 𝑎0 , and 𝑏 = 𝑏0

so the condition is true.

41

𝑟𝑒𝑠𝑢𝑙𝑡 ⋅ 𝑎𝑏 = 𝑎0
𝑏0

Proof of Correctness: Step (odd 𝑏)

42

• Step: Now execute the loop body. The values of the variables
change (the new ones are denoted 𝑎′ , 𝑏′ and 𝑟𝑒𝑠𝑢𝑙𝑡′).

• There are two possibilities:

If b is odd, then
𝑟𝑒𝑠𝑢𝑙𝑡′ = 𝑟𝑒𝑠𝑢𝑙𝑡 ⋅ 𝑎

𝑏′ = (𝑏 − 1)

𝑎′ = 𝑎

So: 𝑟𝑒𝑠𝑢𝑙𝑡′ ⋅ 𝑎′ 𝑏′ = 𝑟𝑒𝑠𝑢𝑙𝑡 ⋅ 𝑎 ⋅ 𝑎𝑏−1 = 𝑟𝑒𝑠𝑢𝑙𝑡 ⋅ 𝑎𝑏 = 𝑎0
𝑏0

Substitute the
values

Inductive
assumption

if b%2 == 1: # b is odd

result = result*a

b = b-1

else:

a = a*a

b = b//2

unchanged

Proof of Correctness: Step (even 𝑏)

43

If b is even, then

𝑟𝑒𝑠𝑢𝑙𝑡′ = 𝑟𝑒𝑠𝑢𝑙𝑡

𝑏′ = 𝑏/2

𝑎′ = 𝑎2

So: 𝑟𝑒𝑠𝑢𝑙𝑡′ ⋅ 𝑎′ 𝑏′ = 𝑟𝑒𝑠𝑢𝑙𝑡 ⋅ 𝑎2 𝑏/2 = 𝑟𝑒𝑠𝑢𝑙𝑡 ⋅ 𝑎 𝑏 = 𝑎0
𝑏0

• So in both cases, the loop invariant indeed holds after each execution of
the loop body.

if b%2 == 1: # b is odd

result = result*a

b = b-1

else:

a = a*a

b = b//2

Substitute the
values

Inductive
assumption

unchanged

Proof of Correctness: Termination

44

• Termination: the loop must terminate, because 𝑏 is reduced
in each execution of the loop body by at least 1.

• We just proved this loop invariant holds:

• When the loop terminates, 𝑏 = 0 (why?)

So: 𝑟𝑒𝑠𝑢𝑙𝑡 ⋅ 𝑎𝑏 = 𝑟𝑒𝑠𝑢𝑙𝑡 ⋅ 𝑎0 = 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑎0
𝑏0

as desired.

QED

𝑟𝑒𝑠𝑢𝑙𝑡 ⋅ 𝑎𝑏 = 𝑎0
𝑏0

Correctness of Code – Remarks

• In general, it is not easy to design correct code. It is even harder
to prove that a given piece of code is correct (namely it meets its
specifications).

• In the course, we may see a couple more examples of program
correctness, using the same technique of loop invariants.

• However, in most cases you will have to rely on your
understanding, intuition, test cases, and informative prints to
convince yourselves that the code you write is indeed hopefully
correct.

• Finally, we remark that software and hardware verification are
major issues in the corresponding industries (and academia).
Elective courses on these topics are being offered at TAU (and
elsewhere).

45

	Slide 1: Extended Introduction to Computer Science CS1001.py
	Slide 2: מבנה ונושאי הקורס (ייתכנו שינויים)
	Slide 3: Topics in Number Theory: Plan
	Slide 4: Integer Exponentiation: Plan
	Slide 5: Integer Exponentiation
	Slide 6: Naïve Integer Exponentiation
	Slide 7: Naïve Integer Exponentiation
	Slide 8: Naïve Integer Exponentiation in Python
	Slide 9: Iterated Squaring (A concrete example first)
	Slide 10: Iterated Squaring, Recursive Code - Take 1
	Slide 11: Iterated Squaring, Recursive Code - Take 2
	Slide 12: Iterated Squaring, Recursive Code - Take 3
	Slide 13: Iterated Squaring, Recursive Code - Take 3 – Time Complexity
	Slide 14: Iterated Squaring, Iterative Code
	Slide 15: Iterated Squaring: Executions
	Slide 16: Correctness using Loop Invariant
	Slide 17: Loop Invariant
	Slide 18
	Slide 19: Iterated Squaring: Simplifying the Code
	Slide 20: A Different View of Iterated Squaring
	Slide 21: The Binary Interpretation: A Concrete Example
	Slide 23: The Binary Interpretation: Generalization of the previous example
	Slide 24: The Binary Interpretation: Complexity
	Slide 25: Complexity Summary: Naïve vs. Iterated Squaring
	Slide 26: Python Implementation - Remarks
	Slide 29: Time Measurements for Naive Squaring vs. Iterated Squaring
	Slide 30
	Slide 31: Modular Exponentiation a. to the b , open paren m o d , c close paren
	Slide 32: Huge Numbers
	Slide 33: Does Modular Exponentiation Have Any Uses?
	Slide 34: Modular Exponentiation
	Slide 35: Code for Modular Exponentiation
	Slide 36: Code for Modular Exponentiation
	Slide 37: Built In Modular Exponentiation: pow(a,b,c)
	Slide 38: Modular Exponentiation: Time Complexity Analysis
	Slide 39: Appendix
	Slide 40: Proving Correctness using Induction
	Slide 41: Proof of Correctness: Base
	Slide 42: Proof of Correctness: Step (odd b)
	Slide 43: Proof of Correctness: Step (even b)
	Slide 44: Proof of Correctness: Termination
	Slide 45: Correctness of Code – Remarks

