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Topics in Number Theory: Plan

Exponentiation of integers — this lecture
Primality testing (using Fermat’s “little theorem”)
Diffie-Helman secret key exchange

Euclid’s GCD (greatest common divisor)



Integer Exponentiation: Plan
1. Exponentiation of integers (a?)
e Naive algorithm (inefficient)

* |terated squaring algorithm (efficient)

«  Modular exponentiation (a? %c)



Integer Exponentiation

* Problem definition:
* |nput: two integers a,b where b = 0

e OQutput: a?

* Asyou know, Python can do this:

>>> print (17**20)
239072435685151324847153

 But we do not settle for a “Python can do it”

solution. We want to explore this ourselves, develop
an efficient algorithm and analyze it




Naive Integer Exponentiation

 The naive method:
b

« Compute successive powers a’, al, a? a3, ...., a".

 Time complexity?
* For simplicity, we count the number of multiplications needed, ignoring the size
of the numbers multiplied, which increases throughout the process

» Justification (beyond simplicity): this will still allow us to compare this naive
solution to the improved one, soon to be presented

 We need b multiplications. What is the size of b?
* If b has n bits, namely 2! < b < 27, this is ©(2™) multiplications.

* So this solution has exponential time complexity as a function of n, the size in
bits of the exponent.



Naive Integer Exponentiation

For example, if n = 20, say b = 2%2% — 17, such procedure takes
220 — 17 = 1048559 multiplications.

If n = 60 bits long, say b = 2% — 17, such procedure takes
2600 — 17 = 18446744073709551599 multiplications.

A computer capable of 101° multiplication per second would still need over
58 years to complete the computation!

So this exponential-time complexity solution is completely infeasible even
for moderate size numbers (with merely a few tens of bits).



Naive Integer Exponentiation in Python

def naive power (a,b):
""" Computes a**b using all successive powers.
Assume a,b are 1integers, b>=0 """
result = 1 # a**0
for i in range (0,Db): # b iterations
result *= a
return result

>>> naive power (3, 0)

1

>>> nailve power (3, 2)

9

>>> naive power (3, 10)

59049

>>> naive power (3, 100)
515377520732011331036461129765621272702107522001
>>> naive power (3, -10)

1

Take a look at the code and see if you understand it, and specifically why
raising 3 to -10 returned 1.




Iterated Squaring (A concrete example first)

Suppose we want to compute a’. ab7 = q%6 . 4
= (@®)? - q
if bisodd: a? =a’!-a =(a®*?-a)?-a
2 2
else al = ab/? . /2 = (aP/?) =((@®)?-a)" - a

= (((a8)2)2 - a)z - a

2

(((a4)2)2)2 - a> a

Number of multiplications?
We have 6 squaring, each takes just a

single multiplication: a™ = (a™?2) - (a™?)

|
~/

2

((((a2)2)2)2>2 al -a

2

/\/_\

Plus we have 2 additional multiplications

by a.
2 2 ‘

All'in all, we need just 6 + 2 = 8 = ((((a)Z)Z) ) cal -a

multiplications. Way better than the

67 multiplications of the naive method.



lterated Squaring, Recursive Code -
Take 1

power recl (a,b):
''' Computes a**b using iterated squaring, recursively.

Assume a,b are integers, b>=0 ''"

if bisodd: a? = aP~1.qa

b==0:
2
1 else al = ab/? . /2 = (aP/2)

2 == 1: # b is odd

power recl(a, b-1) * a

b

o\°

power recl(a, b//2) * power recl(a, b//2)

10

This implementation calls for improvements in efficiency. Why?




lterated Squaring, Recursive Code -
Take 2

power recZ(a,b):
''' Computes a**b using iterated squaring, recursively.

Assume a,b are integers, b>=0 ''"

if bisodd: a? = aP~1.qa

b==0:
2
1 else al = ab/? . /2 = (aP/2)

2 == 1: # b is odd

power recZ(a, b-1) * a

b

o\°

res = power rec2(a, b//2)

res*res

e We could further improve style, recalling that when b is even:

§ qb = (ab/z)2 — (a2)b/2




lterated Squaring, Recursive Code -
Take 3

power rec3(a,b):
''' Computes a**b using iterated squaring, recursively.

Assume a,b are integers, b>=0 ''"

if bisodd: a’ =a’!-a
1 else al = gb/2 . gb/2 = (ab/Z)2
— (aZ)b/z

b==0:

2 == 1: # b is odd

power rec3(a, b-1) * a

b

o\°

power rec3(a*a, b//2)

12

* Note: following a recursive call in which b is odd, must come a call in

which it is even.
* What are the worst and best cases here?
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lterated Squaring, Recursive Code -
Take 3 — Time Complexity

For both worst and best cases, recursion tree is a “chain” of depth
O(logb) = 0O(n).

As we already mentioned, this is not the real time complexity of the
function, since we ignored the time complexity of the arithmetical
operations in each call.

* We have a subtraction (b-1), which takes O(n) for an n-bit number.

* We have a floor division by 2 (b//2), which also takes O(n) for an n-bit
number (note that this is an exceptions, as division normally takes 0(n?),
like multiplication).

* However, as we already mentioned, the multiplications at each step involve
numbers of increasing sizes, and we do not analyze this here (maybe HW).



Iterated Squaring, Iterative Code

def powerl (a,b):
""" Computes a**b using ilterated squaring.

Assume a,b are integers, b>=0 """

result =1
while b>0: if bisodd: a? =a?1-a
if b%2 == 1: else ab = gb/2 . gb/2 = (ab/Z)z
result *= a — (g2 )=
b = b-1
else:
a = a*a
b =Db//2

return result

14
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Iterated Squaring: Executions

Let us now run this on a few cases:

>>> powerl (3 ,4)

81

>>> powerl (5, 5)
3125

>>> powerl (2, 10)
1024

>>> powerl (2, 30)
1073741824

>>> powerl (2, 100)
12676500600228229401496703205376
>>> powerl (2, —-100)
1



Correctness using Loop Invariant

A loop invariant is some value that remains unchanged between iterations.

We claim that each time we are about to check the loop condition, the

following invariant holds:

b _ , by

result - a ag

where ag, by are the initial values of a, b (functions arguments).

This loop invariant can be proven by induction on the iteration number
(complete proof in the appendix).

When the loop terminates, b = 0.

Conclusion: when the loop terminates, result - a® = result = a,”°

as desired.



Loop Invariant

 We can easily check this by adding prints to the code:

while b>0:
print ("result = ",result, \
"a =", a," b =" ,b, \
" result* (a**b)=", result*a**b)
1f b%2 ==

>>> powerl (3,11)

result =1 a =3 b = 11 result*(a**b)= 177147
result = 3 a =3 b = 10 result*(a**b)= 177147
result = 3 a =9 b =5 result* (a**b)= 177147
result = 27 a = 9 b =4 result* (a**b)= 177147
result = 27 a = 81 b =2 result* (a**b)= 177147
result = 27 a = 6561 Db =1 result* (a**b)= 177147

177147

* So at least in this example the condition indeed holds every time!

17
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Comic Relief”

S

There Are 10 Types
Of People: Those
Who Understand
Binary And Those
) Who Don't \
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Iterated Squaring: Simplifying the Code

* Note that we could discard the two lines struekthrough below.

def powerl (a,b) :

result = 1
while b>0:
if b%2 == 1: # b is odd
result = result*a
b—b—1

—l (e I ]
ot

a = a*a
b =Db//2

return result

* This is because following an iteration in which b is odd, must come an
iteration in which it is even.

e Plusrecallthatb//2 rounds down the result.

19



A Different View of Iterated Squaring

* The resulting implementation provides a different, and interesting
interpretation of our algorithm, which will be explained now.

def powerZ2(a,b):
result = 1
while b>0: # b has more digits
if b%2 == 1: # b is odd
result = result*a
a = a*a
b =Db//2 # discard b's LSB
return result

 The new interpretation relates to b's representation in binary.

 Note that b/ /2 actually discards the least significant bit (LSB) of b.

20
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The Binary Interpretation:
A Concrete Example

Suppose we want to compute a®’.

We can represent 67 as a sum of powers of 2 (this representation is unique, and

corresponds to the binary representation of 67 (1000011),
e thatis67 = 64 + 2 + 1.

. i
Our algorithm computes the terms a?): a2, a* a8 al6, a3?, a%

64+2+1

And uses (some of) them to compute a®’ = a = a%.qa%.al

In fact, note that the algorithm uses only those powers of a that correspond to

bits in b with value 1:

ab’ = a1-64 +032+016+08+04+1-2+1-1

=a1-64,ﬂy{z,M,}ly{,go/4/,a1-z,a1-1



The Binary Interpretation:

Generalization of the previous example

* Let b be an n-bit non-negative integer

* namely 2" 1 < p < 2n

e Inparticular b = (by_q ...byb1by)y = Y=g ( b; - 2Y)

e.g. b =67, = 1000011,

4

« Compute: a?, a* a8

n-1, o
* Thenal = qZi=o bi2" =

I

e, al

2" (no need for a?9> a
s (abi'zi) = Hbi=1 (a(zi))

ax+y — ax . ay

23
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The Binary Interpretation:
Complexity

* Let b be an n-bit non-negative integer

* namely 2" 1 < p < 2n

e Inparticular b = (by_q ...byb1by)y = Y=g ( b; - 2Y)

e.g. b =67, = 1000011,

4

« Compute: a?, a* a8

* requires n — 1 multiplications

n-1, o
* Thenal = qZi=o bi2" =

n—1
(=0

v, a@D (no need for a@M> ¢

(abi'zi) — Hbi=1 (azi)

* requires at most n — 1 multiplications

* why at most? and how many at least?

24
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Complexity Summary: Naive vs. Iterated Squaring

e Given two integers a, b, where b = 0 and the size of b is n bits, namely
2l < p < 2™

* The Naive algorithm takes b multiplications, 0(2")

which is between 2" 1 and 2™ — 1 multiplications
* |terated squaring takes between o)

n —1and 2(n — 1) multiplications multiplications

* So naive is exponentially slower than iterated squaring!

 Remark: We counted just “multiplications” here, and ignored the size
of numbers being multiplied, and how many bit operations are
required. This simplifies the analysis but also may deviate significantly
from “the truth”.

25



Python Implementation - Remarks

While the abstract iterated squaring algorithm performs at
most 2(n — 1) multiplications,

our Python code of power2 may perform up to 2n
multiplications (where are the 2 additional ones hiding?)

This difference is negligible, and can be eliminated by adding
appropriate conditions to the code (which we avoided, to
keep the code simple).
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Time Measurements for
Naive Squaring vs. Iterated Squaring

Actual Running Time Analysis:
We'll measure the time needed (in seconds) for computing 3? for
b=2-10>, 10%, 2-10° using the two algorithms.

>>> elapsed("naive power (3, 2*10**5)")
2.244201

>>> elapsed ("power2 (3, 2*10**5)")
0.0317929999999999¢6

>>> elapsed("naive power (3, 10**6)")
57.69631299999999¢6

>>> elapsed ("power2 (3, 10**6)")
0.3366879999999952

>>> elapsed("naive power (3, 2*10**6)")
205.56775500000003
>>> elapsed ("power2 (3, 2*10**6)")

1.0069569999999999 Iterated squaring wins
(big time)!
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Comic Relief”

Real programmers code in binary.
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Modular Exponentiation
a? (mod c)
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Huge Numbers

Using iterated squaring, we can compute a? for, say,

b =210 _17 =1267650600228229401496703205359.
This will take no more than 200 multiplications, a piece of cake even
for an old, faltering machine.

A piece of cake? Really? 200 multiplications of what size numbers?

For a = 2 the result of the exponentiation above is 21°° — 16 bits

long! For a > 2 the result is even larger!!
* No machine could generate, manipulate, or store such huge numbers.

Can anything be done? Not really!
Unless you are ready to consider a closely related problem:

Modular exponentiation: Compute a” mod ¢, where a,b = 0,c = 2

are all integers. This is the remainder of a? when divided by c.
* In Python, this can be expressed as (a ** b) % c.




Does Modular Exponentiation Have
Any Uses?
Applications using modular exponentiation directly (partial list):
* Randomized primality testing

 Diffie Hellman secret key exchange
e Rivest-Shamir-Adelman (RSA) public key cryptosystem (PKC)

We will discuss the first two topics soon, and leave RSA PKC to
an (elective) crypto course.

33
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Modular Exponentiation

We should still be a bit careful. Computing a” first, and only then
taking the remainder mod ¢, is not going to help at all.

Instead, we compute all the squares mod ¢, namely:
e a'modc, a’?modc, a*modc...

In fact, following every multiplication, we compute the remainder.
We rely on the fact (proof omitted) that for all a, b, c :

(a-b)modc = ((amodc)-(bmodc))modc

This way, intermediate results never exceed (¢ — 1)?, eliminating the
problem of huge numbers.



Code for Modular Exponentiation

We can easily modify our function, power, to handle modular
exponentiation.

modpower (a, b, c) :
""" o computes a**b modulo c,
using lterated squaring

result = 1
b>0:
b%2 == 1:
result = (result * a) % c
a = (a*a) %

O
|

R \

result

35



Code for Modular Exponentiation

e A few test cases:

>>> modpower (2,10,100) # sanity check: 29 = 1024
24

>>> modpower (2, 2**100-17, 5**100)
7763470113346743895580721708565743044722675708816681629524142921320613

>>> modpower (17, 2**1000+3**500, 5**100+2)
1119887451125159802119138842145903567973956282356934957211106448264630

36



Built In Modular Exponentiation: pow(a,b,c)

e Guido van Rossum (Python “father”) has not waited for our code, and Python
has a built in function, pow(a,b,c), for efficiently computing a® mod c.

>>> modpower (17, 2**1000+3**500, 5**100+2) \
- pow (17, 2**10004+3**500, 5**100+2)

* This is comforting : modpower code and Python pow agree . Phew ...

>>> elapsed ("modpower (17, 2**10004+3**500, 5**100+2)", number=1000)
2.2808940000000406

>>> elapsed("pow (17, 2**1000+3**500, 5**100+2)", number=1000)
0.7453199999999924

* So our code is about 3 times slower than Python’s buit-in pow.
37



Modular Exponentiation:
Time Complexity Analysis

e Suppose a, b, c are all n-bit long integers, b = 0 and ¢ = 2.

 To compute a®? mod c using iterated squaring we need at most

2(n — 1) = 0(n) multiplications, each followed immediately by a modulo
operation

* Since Intermediate multiplicands never exceed ¢, each multiplication takes

0(n?) bit operations (using elementary school multiplication as we saw earlier
in the course).

 Each product is smaller than c¢?, which has at most 2n bits, and so computing
the remainder of such product modulo ¢ takes another 0 (n?) bit operations

(using long division, also studied in elementary school, but we did not see it in
this course).

* All by all, computing a? mod c takes 0(n?) bit operations.

38



Appendix



Proving Correctness using Induction

We can prove the correctness of the function powerl, by showing a loop
invariant — a condition that holds each time we are about to check the

loop condition.

* Base: We show the condition holds before we enter the loop for the first
time.

* Step: we show that if the condition holds before entering the loop for the
i-th time, it will hold when we enter the loop for the (i + 1)-th time.

e Termination: We also show that the iteration is executed a finite number of
times. This implies that the condition will hold when we exit the loop for the
last time.

Finally, we show that if the condition is satisfied when the execution
terminates, this implies that the code is indeed correct.

Note that such proof is in fact a proof by induction on the number of
tjgnes the loop is executed.



Proof of Correctness: Base

Now we want to prove that this is indeed an invariant
condition.

We claim that each time we are about to check the loop
condition, the following condition holds:

b _ , b

result - a a

Base: The first time we enter the loop
result =1,a = ay,and b = b,

so the condition is true.



Proof of Correctness: Step (odd b)

e Step: Now execute the loop body. The values of the variables
change (the new ones are denoted a’, b’ and result’).

* There are two possibilities:

Ifbisodd,then 1f b%2 == 1: # b is odd
result = result*a
b = b-1

result’ = result - a
b'=(b—-1)
a =q —£_unchanged >

/b’:

b
result -a-a?~! = result - a? = a,°

| |

Substitute the Inductive
values assumption

So: result’ - (a b-1

42



Proof of Correctness: Step (even b)

If b is even, then

result’ = result —<__unchanged >
b’ = b2

a’==a2 else:

a = a*a

b//2

O
I

So: result’ - (a’)b’ = result - (a®)?/? = result - (a)? = ago

1

Substitute the Inductive
values assumption

* Soin both cases, the loop invariant indeed holds after each execution of
the loop body.

43
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Proof of Correctness: Termination

Termination: the loop must terminate, because b is reduced
in each execution of the loop body by at least 1.

We just proved this loop invariant holds: result - a? = aobo

When the loop terminates, b = 0 (why?)

b
So: result-aP = result - a® = result = aoo

as desired.

QED



Correctness of Code — Remarks

In general, it is not easy to design correct code. It is even harder
to prove that a given piece of code is correct (namely it meets its
specifications).

In the course, we may see a couple more examples of program
correctness, using the same technique of loop invariants.

However, in most cases you will have to rely on your
understanding, intuition, test cases, and informative prints to
convince yourselves that the code you write is indeed hopefully
correct.

Finally, we remark that software and hardware verification are
major issues in the corresponding industries (and academia).
Elective courses on these topics are being offered at TAU (and
elsewhere).
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