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Topics in Number Theory: Plan

1. Exponentiation of integers – last lecture

2. Primality testing (using Fermat’s “little theorem”)

3. Diffie-Helman secret key exchange

4. Euclid’s GCD (greatest common divisor)
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Prime Numbers

• A prime number is a positive integer, divisible only by 1 and by 
itself. Other numbers are called composite.

• So 10,001 = 73 ⋅ 137 is not a prime (it is a composite
number), but 10,007 is prime.
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Large Prime Numbers
• There are some fairly large primes out there.

• The largest known prime number (as of December 2023, 
found in 2018 by Patrick Laroche) is 282,589,933 − 1. It has 
more than 24 million digits when written in base 10.

• https://en.wikipedia.org/wiki/Largest_known_prime_number
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Published in 2000: A prime
number with 2000 digits
(40-by-50 table). By John
Cosgrave, Math Dept, St.
Patrick's College, Dublin,
Ireland.

https://en.wikipedia.org/wiki/Largest_known_prime_number


Infinitely Many Primes
• The fact that there are infinitely many primes was proved 

already by Euclid, in his Elements (Book IX, Proposition 20).

• The proof is by contradiction: 

• Suppose there are finitely many primes 𝑝1, 𝑝2, … 𝑝𝑘. 

• Then 𝑡 = 𝑝1 ⋅ 𝑝2 ⋅ … ⋅ 𝑝𝑘 + 1 cannot be divisible by any of 
the 𝑝𝑖’s, so none of them are its prime factors. So, either 𝑡
is prime or has other prime factors.

(Note that 𝑡 need not be a prime itself, 
e.g. 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 13 + 1 = 30,031 = 59 ⋅ 509)
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Density of Prime Numbers
• The Prime Number Theorem (19th century): 

A random 𝑛 bit number is a prime with probability roughly 𝑂
1

𝑛
.

• So, the probability to be prime decreases with 𝑛, but the number of 𝑛-
bit primes increases with 𝑛 (recall that an 𝑛-bit number is between 
2𝑛−1 and 2𝑛 − 1, so there are 2𝑛−1 numbers in the range, and 

therefore 𝑂
1

𝑛
⋅ 2𝑛−1 prime numbers with 𝑛 bits.

• Informally, this means there are plenty of primes of any size, and it is 
quite easy to hit one by just picking at random.
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Use of Prime Numbers
• Cryptosystems: Primes (always huge primes) are used to 

improve confidentiality (encryption) and authenticity (digital 
signatures) of communication.

• Error correction codes: Primes (typically small primes) are used 
to improve reliability of communication and data storage.

• Data structures and algorithms: Primes are sometimes used to 
improve complexity, e.g. by decreasing the probability of the 
worst case.

• Many more…
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Two Common Problems

• Suppose we are given a number 𝑁.

• Factorization problem: find 𝑁’s prime factors
This is an example for a search problem

• Primality testing problem: decide if 𝑁 is prime or not. 
This is an example for a decision (yes/no) problem

• Which of these two problems sounds presumably easier?

• We will deal here with the latter and get back to factorization in 
the end of the class.
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Primality Testing by Trial Division
• If 𝑁 is composite, then we can write 𝑁 = 𝐾 ⋅ 𝐿 , where               
1 < 𝐾, 𝐿 < 𝑁.

• This means that at least one of the two factors is ≤ 𝑁.

• This observation leads to the following “trial division” algorithm 
for testing if 𝑁 is prime or not:
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Trial Division Algorithm

• Go over all 𝑚 in the range 2 ≤ 𝐷 ≤ 𝑁. 

• For each such 𝑚, check if it evenly divides 𝑁. 

• If there is such divisor, 𝑁 is a composite. 

• If there is none, 𝑁 is a prime.



Trial Division in Python
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• Executions in class.
• What are worst and best cases in terms of runtime?

• Seems very good, right?
• Think again. 



Trial Division: Time Complexity
• This algorithm takes up to 𝑁 modulo operations in the worst 

case (actually, it may take more basic operations, as modulo on 
long integers takes more than a single step). 

• Should we consider it efficient or inefficient?
• Try  trial_division(2**321 + 17)

• 𝑁 seems reasonable, but it is not
• 𝑁 is an 𝑛 bit number.
• So, 2𝑛−1 ≤ 𝑁 < 2𝑛

• So, 2(𝑛−1)/2 ≤ 𝑁 < 2𝑛/2

• In other words,  2
𝑛−1

≤ 𝑁 < 2
𝑛

• So 𝑁 = Θ( 2
𝑛
)

• Exponential in the input size
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Comic Relief *

אנו מזמינים אתכם לשלוח לנו הצעות לתמונות שיופיעו על שקפים אלו לאורך הסמסטר* 



Primality Testing via Witnesses

• Basic Idea [Solovay-Strassen, 1977]: 
To show that 𝑁 is composite, enough to find evidence that 𝑁
does not behave like a prime. 

• We will look for witnesses that will provide such evidence to the 
compositeness of 𝑁.

• Note: a prime factor of 𝑁 is such a witness, but there are other 
witnesses, as we will now see. These other witnesses for 𝑁’s 
compositeness may not tell us anything about 𝑁’s factorization.
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Witnesses for Compositeness: type 1
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Worst case complexity 𝑂(2𝑛/2)



Witnesses for Compositeness: type 2

15 Worst case complexity 𝑂 𝑁 ⋅ 𝑛3 = 𝑂(2𝑛 ⋅ 𝑛3)

Note:



Fermat’s Little Theorem*

16 * Not to be confused with the famous Fermat’s last Theorem



Fermat’s Little Theorem: Example
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Witnesses for Compositeness: type 3
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Worst case complexity 𝑂 𝑁 ⋅ 𝑛3 = 𝑂(2𝑛 ⋅ 𝑛3)

Note (requires proof, omitted):



Fermat’s Witnesses
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• You may be wondering when this is all going to…

• All the witnesses we saw require in the worst case 
(when 𝑁 is prime) exponential time complexity 

• But now randomization will come to our aid

• It was shown by Miller and Rabin (1980) that if 𝑁 is 
composite, then at least ½ of {1, 2, … ,𝑁 − 1} are Fermat 
witnesses for 𝑁’s compositeness

• In other words, |FERMN|≥ 𝑁/2

• Example: what are |FERM1000| and |FERM1001|?



Randomized Primality Testing
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Randomized Primality Testing (2)
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2,… ,𝑁 − 1

2,… ,𝑁 − 1



Randomized Primality Testing (3)
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Randomized Primality Testing in Python
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• The default parameter show_witness allows one to see the 
Fermat witness that was found for 𝑁.

>>> is_prime(11)

True

>>> is_prime(10)

False

>>> is_prime(10, True)

10 is composite

3 is a witness, found on iteration 1



Time Complexity
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Pushing Time Complexity to the Limit

25

• You may try to verify that the largest known prime (so far) is 
indeed prime. But do take it easy. Even one witness will push 
your machine way beyond its computational limit.

>>> N = 2**82589933 -1

>>> pow(56, N-1, N) == 1

# patience, young lads !

# and even more patience !!

• Here, 𝑛 = 8258993, so even a polynomial time 𝑂(𝑛3)
algorithm requires quite some time.



Randomized Primality Testing -
Summary
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Finding Primes
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• Suppose you want to find a prime number with 𝑛 bits. 

• You can sample numbers (in the range 2𝑛−1 to 2𝑛 − 1) and check 
if the sampled number is prime, until you hit one. 

def find_prime(n):

""" find random n-bit long prime """

while True:

candidate = random.randrange(2**(n-1),2**n)

if is_prime(candidate):

return candidate

• While True??
• Does this function always halt?
• How many samples are needed on average?
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Comic Relief *

אנו מזמינים אתכם לשלוח לנו הצעות לתמונות שיופיעו על שקפים אלו לאורך הסמסטר* 



Final Remarks (for reference only)
Carmichael numbers
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• We said if 𝑁 is composite, then |FERMN|≥ 𝑁/2.
• This is almost true.

• There are some annoying numbers, known as Carmichael 
numbers, where this does not happen. 

• In fact, Carmichael numbers are exactly the composite numbers 
𝑁 where GCDN = FERMN.

• However:
• These numbers are very rare and it is highly unlikely you'll run into one, 

unless you really try hard.
• Miller and Rabin devised a similar algorithm, but slightly more 

sophisticated, which takes care of these annoying numbers as well.
• If you want the details, you will have to look it up, or take the elective 

crypto course.



Final Remarks (for reference only) 
Deterministic Polynomial-time solution?
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• For all practical purposes, the randomized algorithm 
based on the Fermat test (and various optimizations 
thereof) supplies a satisfactory solution for identifying 
primes.

• Still, the question whether composites / primes can be 
recognized efficiently without tossing coins in 
deterministic polynomial time (i.e., polynomial in 𝑛, the 
length in bits of 𝑁), remained open for many years.



Final Remarks (for reference only) 
Deterministic Polynomial-time solution!
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Final Remarks (for reference only) 
Back to Integer Factorization

• Trial division can be used to find not only one divisor of a number, but all its 

prime factors. But as we saw this takes 𝑂(2𝑛/2) time for an 𝑛 bit number.

• The best integer factorization algorithm to date, called the general number 

field sieve algorithm, does so in 𝑂(𝑒8𝑛
1/3⋅log2/3 𝑛 ).

• Factoring integers is believed to be a hard computational problem, for which 
we believe there is no polynomial time solution: until now, no Polynomial 
time algorithm was found. However, it has not been proven that such an 
algorithm does not exist.

• As you already know, this is not the case with the “opposite direction” – the 
problem of integer multiplication.

• The presumed one-way computational hardness is important for the 
algorithms used in cryptography such as RSA public-key encryption and the 
RSA digital signature.
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Final Remarks (for reference only) 
Fermat’s Last Theorem
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Appendix
(for reference only)

Euclid's gcd: Proof of Correctness Using an Invariant,
Multiplicative inverses,

Extended GCD
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Euclid's gcd: Proof of Correctness 
Using an Invariant

• Suppose 0 < l < k. 
• We first show that gcd(k, l) = gcd(l, k – l).

- Denote g = gcd(k, l), h = gcd(l, k – l)
- Since g divides both k and l, it also divides k – l.
- Thus it divides both l and k – l.
- Since h is the greatest common divisor of l and k – l, every 

divisor of l and k – l divides h (think of primes' powers).
- As g is a divisor of both, we conclude that g divides h.
- A similar argument shows that any divisor of l and k – l is also a 

divisor of k.
- Thus h divides the gcd of k and l, which is g.
- So g divides h and h divides g.
- They are both positive, therefore g equals h.

• QED

• Note: a (different) invariant was used to prove correctness of the 
iterated squaring algorithm to compute ab.
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Euclid's gcd: Proof of Correctness  Using 
an Invariant (cont.)

• Suppose 0 < l ≤ k. We just showed that gcd(k, l) = gcd(k – l, l).

• If k – l < l, then k(mod l) = k – l, and we are done.

• Otherwise, k – l  ≥ gcd(k, l) = gcd(k – l ,l).

• Repeating the previous argument, gcd(k – l, l) = gcd(k – 2∙l, l).

• There is a unique m ≥ 1 such that k (mod l) = k – ml.

• By the argument above,
gcd(k, l) = gcd(l, k – l) = gcd(l, k – 2∙l  )  =  gcd(l, k – 3∙l) = 
.... = gcd(l, k – m∙l) = gcd(l, k mod l)

QED
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Proof of Correctness Using an  Invariant: 
Conclusion

• In every iteration of Euclid's algorithm, we replace 
(k, l) by (l, k mod l), until the smaller number equals 
zero.

• The claim above means that at each iteration, the 
gcd is invariant.

• At the final stage, when we have (g, 0), we return 
their gcd, which equals g.

• By this invariance, g indeed equals the gcd of the 
original (k, l)

QED
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Relative Primality and Multiplicative  
Inverses

gcd(28,31)=1

gcd(12,35)=1

gcd(527,621)=1

gcd(1002,973)=1

If gcd(k,m) = 1, we say that k,m are relatively prime.

Suppose k,m are relatively prime, and k < m.

Then there is a positive integer, a, a < m, such that

a∙k = 1 (mod m) 

Such a is called a multiplicative inverse of k modulo m.
50



Relative Primality and Multiplicative 
Inverses, (cont.)

Suppose k,m are relatively prime, and k < m.
The there is a positive integer, a, a < m, such that

a∙k = 1 (mod m) 
Such multiplicative inverse, a, can be found efficiently, 
using an extended version of Euclid's algorithm (details 
not elaborated upon in class).

10 ∙ 28 = 1 (mod 31)
3 ∙ 12 = 1 (mod 35)

218 ∙ 527 = 1 (mod 621)
817 ∙ 937 = 1 (mod 1002)
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