
Extended Introduction to Computer Science
CS1001.py

* Slides based on a course designed by Prof. Benny Chor

Chapter F
Lecture 13

Michal Kleinbort, Amir Rubinstein

School of Computer Science
Tel-Aviv University

Fall Semester 2023-24
http://tau-cs1001-py.wikidot.com

Topics in Number Theory:
Factoring and Primality Testing

http://tau-cs1001-py.wikidot.com/

Topics in Number Theory: Plan

1. Exponentiation of integers – last lecture

2. Primality testing (using Fermat’s “little theorem”)

3. Diffie-Helman secret key exchange

4. Euclid’s GCD (greatest common divisor)

2

Prime Numbers

• A prime number is a positive integer, divisible only by 1 and by
itself. Other numbers are called composite.

• So 10,001 = 73 ⋅ 137 is not a prime (it is a composite
number), but 10,007 is prime.

3

Large Prime Numbers
• There are some fairly large primes out there.

• The largest known prime number (as of December 2023,
found in 2018 by Patrick Laroche) is 282,589,933 − 1. It has
more than 24 million digits when written in base 10.

• https://en.wikipedia.org/wiki/Largest_known_prime_number
4

Published in 2000: A prime
number with 2000 digits
(40-by-50 table). By John
Cosgrave, Math Dept, St.
Patrick's College, Dublin,
Ireland.

https://en.wikipedia.org/wiki/Largest_known_prime_number

Infinitely Many Primes
• The fact that there are infinitely many primes was proved

already by Euclid, in his Elements (Book IX, Proposition 20).

• The proof is by contradiction:

• Suppose there are finitely many primes 𝑝1, 𝑝2, … 𝑝𝑘.

• Then 𝑡 = 𝑝1 ⋅ 𝑝2 ⋅ … ⋅ 𝑝𝑘 + 1 cannot be divisible by any of
the 𝑝𝑖’s, so none of them are its prime factors. So, either 𝑡
is prime or has other prime factors.

(Note that 𝑡 need not be a prime itself,
e.g. 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 13 + 1 = 30,031 = 59 ⋅ 509)

5

Density of Prime Numbers
• The Prime Number Theorem (19th century):

A random 𝑛 bit number is a prime with probability roughly 𝑂
1

𝑛
.

• So, the probability to be prime decreases with 𝑛, but the number of 𝑛-
bit primes increases with 𝑛 (recall that an 𝑛-bit number is between
2𝑛−1 and 2𝑛 − 1, so there are 2𝑛−1 numbers in the range, and

therefore 𝑂
1

𝑛
⋅ 2𝑛−1 prime numbers with 𝑛 bits.

• Informally, this means there are plenty of primes of any size, and it is
quite easy to hit one by just picking at random.

6

Use of Prime Numbers
• Cryptosystems: Primes (always huge primes) are used to

improve confidentiality (encryption) and authenticity (digital
signatures) of communication.

• Error correction codes: Primes (typically small primes) are used
to improve reliability of communication and data storage.

• Data structures and algorithms: Primes are sometimes used to
improve complexity, e.g. by decreasing the probability of the
worst case.

• Many more…

7

Two Common Problems

• Suppose we are given a number 𝑁.

• Factorization problem: find 𝑁’s prime factors
This is an example for a search problem

• Primality testing problem: decide if 𝑁 is prime or not.
This is an example for a decision (yes/no) problem

• Which of these two problems sounds presumably easier?

• We will deal here with the latter and get back to factorization in
the end of the class.

8

Primality Testing by Trial Division
• If 𝑁 is composite, then we can write 𝑁 = 𝐾 ⋅ 𝐿 , where
1 < 𝐾, 𝐿 < 𝑁.

• This means that at least one of the two factors is ≤ 𝑁.

• This observation leads to the following “trial division” algorithm
for testing if 𝑁 is prime or not:

9

Trial Division Algorithm

• Go over all 𝑚 in the range 2 ≤ 𝐷 ≤ 𝑁.

• For each such 𝑚, check if it evenly divides 𝑁.

• If there is such divisor, 𝑁 is a composite.

• If there is none, 𝑁 is a prime.

Trial Division in Python

10

• Executions in class.
• What are worst and best cases in terms of runtime?

• Seems very good, right?
• Think again.

Trial Division: Time Complexity
• This algorithm takes up to 𝑁 modulo operations in the worst

case (actually, it may take more basic operations, as modulo on
long integers takes more than a single step).

• Should we consider it efficient or inefficient?
• Try trial_division(2**321 + 17)

• 𝑁 seems reasonable, but it is not
• 𝑁 is an 𝑛 bit number.
• So, 2𝑛−1 ≤ 𝑁 < 2𝑛

• So, 2(𝑛−1)/2 ≤ 𝑁 < 2𝑛/2

• In other words, 2
𝑛−1

≤ 𝑁 < 2
𝑛

• So 𝑁 = Θ(2
𝑛
)

• Exponential in the input size
11

12

Comic Relief *

אנו מזמינים אתכם לשלוח לנו הצעות לתמונות שיופיעו על שקפים אלו לאורך הסמסטר*

Primality Testing via Witnesses

• Basic Idea [Solovay-Strassen, 1977]:
To show that 𝑁 is composite, enough to find evidence that 𝑁
does not behave like a prime.

• We will look for witnesses that will provide such evidence to the
compositeness of 𝑁.

• Note: a prime factor of 𝑁 is such a witness, but there are other
witnesses, as we will now see. These other witnesses for 𝑁’s
compositeness may not tell us anything about 𝑁’s factorization.

13

Witnesses for Compositeness: type 1

14

Worst case complexity 𝑂(2𝑛/2)

Witnesses for Compositeness: type 2

15 Worst case complexity 𝑂 𝑁 ⋅ 𝑛3 = 𝑂(2𝑛 ⋅ 𝑛3)

Note:

Fermat’s Little Theorem*

16 * Not to be confused with the famous Fermat’s last Theorem

Fermat’s Little Theorem: Example

17

Witnesses for Compositeness: type 3

18

Worst case complexity 𝑂 𝑁 ⋅ 𝑛3 = 𝑂(2𝑛 ⋅ 𝑛3)

Note (requires proof, omitted):

Fermat’s Witnesses

19

• You may be wondering when this is all going to…

• All the witnesses we saw require in the worst case
(when 𝑁 is prime) exponential time complexity

• But now randomization will come to our aid

• It was shown by Miller and Rabin (1980) that if 𝑁 is
composite, then at least ½ of {1, 2, … ,𝑁 − 1} are Fermat
witnesses for 𝑁’s compositeness

• In other words, |FERMN|≥ 𝑁/2

• Example: what are |FERM1000| and |FERM1001|?

Randomized Primality Testing

20

Randomized Primality Testing (2)

21

2,… ,𝑁 − 1

2,… ,𝑁 − 1

Randomized Primality Testing (3)

22

Randomized Primality Testing in Python

23

• The default parameter show_witness allows one to see the
Fermat witness that was found for 𝑁.

>>> is_prime(11)

True

>>> is_prime(10)

False

>>> is_prime(10, True)

10 is composite

3 is a witness, found on iteration 1

Time Complexity

24

Pushing Time Complexity to the Limit

25

• You may try to verify that the largest known prime (so far) is
indeed prime. But do take it easy. Even one witness will push
your machine way beyond its computational limit.

>>> N = 2**82589933 -1

>>> pow(56, N-1, N) == 1

patience, young lads !

and even more patience !!

• Here, 𝑛 = 8258993, so even a polynomial time 𝑂(𝑛3)
algorithm requires quite some time.

Randomized Primality Testing -
Summary

26

Finding Primes

27

• Suppose you want to find a prime number with 𝑛 bits.

• You can sample numbers (in the range 2𝑛−1 to 2𝑛 − 1) and check
if the sampled number is prime, until you hit one.

def find_prime(n):

""" find random n-bit long prime """

while True:

candidate = random.randrange(2**(n-1),2**n)

if is_prime(candidate):

return candidate

• While True??
• Does this function always halt?
• How many samples are needed on average?

28

Comic Relief *

אנו מזמינים אתכם לשלוח לנו הצעות לתמונות שיופיעו על שקפים אלו לאורך הסמסטר*

Final Remarks (for reference only)
Carmichael numbers

29

• We said if 𝑁 is composite, then |FERMN|≥ 𝑁/2.
• This is almost true.

• There are some annoying numbers, known as Carmichael
numbers, where this does not happen.

• In fact, Carmichael numbers are exactly the composite numbers
𝑁 where GCDN = FERMN.

• However:
• These numbers are very rare and it is highly unlikely you'll run into one,

unless you really try hard.
• Miller and Rabin devised a similar algorithm, but slightly more

sophisticated, which takes care of these annoying numbers as well.
• If you want the details, you will have to look it up, or take the elective

crypto course.

Final Remarks (for reference only)
Deterministic Polynomial-time solution?

30

• For all practical purposes, the randomized algorithm
based on the Fermat test (and various optimizations
thereof) supplies a satisfactory solution for identifying
primes.

• Still, the question whether composites / primes can be
recognized efficiently without tossing coins in
deterministic polynomial time (i.e., polynomial in 𝑛, the
length in bits of 𝑁), remained open for many years.

Final Remarks (for reference only)
Deterministic Polynomial-time solution!

31

Final Remarks (for reference only)
Back to Integer Factorization

• Trial division can be used to find not only one divisor of a number, but all its

prime factors. But as we saw this takes 𝑂(2𝑛/2) time for an 𝑛 bit number.

• The best integer factorization algorithm to date, called the general number

field sieve algorithm, does so in 𝑂(𝑒8𝑛
1/3⋅log2/3 𝑛).

• Factoring integers is believed to be a hard computational problem, for which
we believe there is no polynomial time solution: until now, no Polynomial
time algorithm was found. However, it has not been proven that such an
algorithm does not exist.

• As you already know, this is not the case with the “opposite direction” – the
problem of integer multiplication.

• The presumed one-way computational hardness is important for the
algorithms used in cryptography such as RSA public-key encryption and the
RSA digital signature.

32

Final Remarks (for reference only)
Fermat’s Last Theorem

33

Appendix
(for reference only)

Euclid's gcd: Proof of Correctness Using an Invariant,
Multiplicative inverses,

Extended GCD

46

Euclid's gcd: Proof of Correctness
Using an Invariant

• Suppose 0 < l < k.
• We first show that gcd(k, l) = gcd(l, k – l).

- Denote g = gcd(k, l), h = gcd(l, k – l)
- Since g divides both k and l, it also divides k – l.
- Thus it divides both l and k – l.
- Since h is the greatest common divisor of l and k – l, every

divisor of l and k – l divides h (think of primes' powers).
- As g is a divisor of both, we conclude that g divides h.
- A similar argument shows that any divisor of l and k – l is also a

divisor of k.
- Thus h divides the gcd of k and l, which is g.
- So g divides h and h divides g.
- They are both positive, therefore g equals h.

• QED

• Note: a (different) invariant was used to prove correctness of the
iterated squaring algorithm to compute ab.

47

Euclid's gcd: Proof of Correctness Using
an Invariant (cont.)

• Suppose 0 < l ≤ k. We just showed that gcd(k, l) = gcd(k – l, l).

• If k – l < l, then k(mod l) = k – l, and we are done.

• Otherwise, k – l ≥ gcd(k, l) = gcd(k – l ,l).

• Repeating the previous argument, gcd(k – l, l) = gcd(k – 2∙l, l).

• There is a unique m ≥ 1 such that k (mod l) = k – ml.

• By the argument above,
gcd(k, l) = gcd(l, k – l) = gcd(l, k – 2∙l) = gcd(l, k – 3∙l) =
.... = gcd(l, k – m∙l) = gcd(l, k mod l)

QED

48

Proof of Correctness Using an Invariant:
Conclusion

• In every iteration of Euclid's algorithm, we replace
(k, l) by (l, k mod l), until the smaller number equals
zero.

• The claim above means that at each iteration, the
gcd is invariant.

• At the final stage, when we have (g, 0), we return
their gcd, which equals g.

• By this invariance, g indeed equals the gcd of the
original (k, l)

QED

49

Relative Primality and Multiplicative
Inverses

gcd(28,31)=1

gcd(12,35)=1

gcd(527,621)=1

gcd(1002,973)=1

If gcd(k,m) = 1, we say that k,m are relatively prime.

Suppose k,m are relatively prime, and k < m.

Then there is a positive integer, a, a < m, such that

a∙k = 1 (mod m)

Such a is called a multiplicative inverse of k modulo m.
50

Relative Primality and Multiplicative
Inverses, (cont.)

Suppose k,m are relatively prime, and k < m.
The there is a positive integer, a, a < m, such that

a∙k = 1 (mod m)
Such multiplicative inverse, a, can be found efficiently,
using an extended version of Euclid's algorithm (details
not elaborated upon in class).

10 ∙ 28 = 1 (mod 31)
3 ∙ 12 = 1 (mod 35)

218 ∙ 527 = 1 (mod 621)
817 ∙ 937 = 1 (mod 1002)

51

	Slide 1: Extended Introduction to Computer Science CS1001.py
	Slide 2: Topics in Number Theory: Plan
	Slide 3: Prime Numbers
	Slide 4: Large Prime Numbers
	Slide 5: Infinitely Many Primes
	Slide 6: Density of Prime Numbers
	Slide 7: Use of Prime Numbers
	Slide 8: Two Common Problems
	Slide 9: Primality Testing by Trial Division
	Slide 10: Trial Division in Python
	Slide 11: Trial Division: Time Complexity
	Slide 12
	Slide 13: Primality Testing via Witnesses
	Slide 14: Witnesses for Compositeness: type 1
	Slide 15: Witnesses for Compositeness: type 2
	Slide 16: Fermat’s Little Theorem*
	Slide 17: Fermat’s Little Theorem: Example
	Slide 18: Witnesses for Compositeness: type 3
	Slide 19: Fermat’s Witnesses
	Slide 20: Randomized Primality Testing
	Slide 21: Randomized Primality Testing (2)
	Slide 22: Randomized Primality Testing (3)
	Slide 23: Randomized Primality Testing in Python
	Slide 24: Time Complexity
	Slide 25: Pushing Time Complexity to the Limit
	Slide 26: Randomized Primality Testing - Summary
	Slide 27: Finding Primes
	Slide 28
	Slide 29: Final Remarks (for reference only) Carmichael numbers
	Slide 30: Final Remarks (for reference only) Deterministic Polynomial-time solution?
	Slide 31: Final Remarks (for reference only) Deterministic Polynomial-time solution!
	Slide 32: Final Remarks (for reference only) Back to Integer Factorization
	Slide 33: Final Remarks (for reference only) Fermat’s Last Theorem
	Slide 46: Appendix (for reference only) Euclid's gcd: Proof of Correctness Using an Invariant, Multiplicative inverses, Extended GCD
	Slide 47: Euclid's gcd: Proof of Correctness Using an Invariant
	Slide 48: Euclid's gcd: Proof of Correctness Using an Invariant (cont.)
	Slide 49: Proof of Correctness Using an Invariant: Conclusion
	Slide 50: Relative Primality and Multiplicative Inverses
	Slide 51: Relative Primality and Multiplicative Inverses, (cont.)

