# Extended Introduction to Computer Science CS1001.py 

# Chapter F Topics in Number Theory: <br> Lecture 13 Diffie-Hellman Secret Key Exchange 

Michal Kleinbort, Amir Rubinstein

School of Computer Science
Tel-Aviv University
Fall Semester 2023-24
http://tau-cs1001-py.wikidot.com

* Slides based on a course designed by Prof. Benny Chor


## Topics in Number Theory: Plan

1. Exponentiation of integers
2. Primality testing (using Fermat's "little theorem")
3. Diffie-Helman secret key exchange
4. Euclid's GCD (greatest common divisor)

## Encryption: Basic Model

- Let us welcome the three major players in this field, Alice, Bob and Eve:

- Alice and Bob communicate over an insecure channel (anyone, in particular Eve, can eavesdrop).
- Goal: send a message from Alice to Bob confidentially (so Eve will not understand it).


## Encryption: Basic Model (2)

- Alice wants to send Bob some message, called plaintext.
- She encrypts the plaintext, using an encryption algorithm, which employs a secret value called key. The encrypted message is called the ciphertext.
- Bob receives the ciphertext, and employs a decryption algorithm with the same key as Alice used, to get the original plaintext.


Credit:
https://www.cs.virgini a.edu/~evans/dragonc rypto/daylmth. 2

- Eve knows the ciphertext, encryption and decryption algs, but not the ${ }^{4}$ secret key, without which decryption is computationally hard.


## Toy Example: Caesar Encryption

- Named after Julius Caesar, who used it to protect messages of military significance.
- Replace the alphabet letters in a cyclic manner, using some fixed offset.
- What is the secret key here?


Image from Wikipedia


Image from:
http://www.maths-resources.net
Key (offset) = +3

- This is a toy example, since breaking the encryption is easy in this case. Simply check all possible offsets and see which yields a meaningful text.


## The Key Exchange Problem

- Additional encryption methods have been used over the years. One famous example is the German Enigma Machine, which utilized a new key each day.


From Wikipedia

- However, this is not the topic of this lecture. We will deal today with the problem of key exchange: Alice and Bob need to share the same secret key, which must be secretly generated and exchanged prior to using the insecure channel for communication.
- A major problem, especially at the internet era: How can Alice and Bob secretly generate and exchange a key, even if they have never physically met, they live on antipodal sides of the globe, and all communication lines are insecure (subject to eavesdropping)?


## Diffie Hellman Key Exchange (1976)

- The basic idea: use a one-way function.
- This is a function that is easy (computationally) to compute in one direction, but hard (again, computationally) in the reversed direction.

(figures from Wikipedia)


## Color Mixing Analogy



Figure from Wikipedia

See also this video: $\underline{\text { https://youtu.be/YEBfamv- do?t=144 (DH starts at 2:25) }}$

## Discrete Log: A One-way Function

- Let $p$ be a large prime (say 1024 bits long).
- Let $g$ be a random integer in the range $1<g<p-1$.
- Let $x=g^{i} \bmod p$ for some $1 \leq i<p-1$.
- The inverse operation, $x=g^{i} \bmod p \mapsto i($ called discrete $\log )$ is believed to be computationally hard.
- We say that the mapping $i \longrightarrow g^{i} \bmod p$ is a one way function.
- This is a computational notion. With unbounded (or even just exponential) resources, one can invert this function (compute discrete log).
- Note: computing (non-descrete) $\log$ is easy (but we do not show this).


## Modular Exponentiation Properties

Questions about the order of exponentiation and $\bmod p$ operations are often raised.
Well, all the following hold (we are interested in the last one for our purposes):

- $((a \bmod p)+(b \bmod p)) \bmod p=(a+b) \bmod p$.
- $((a \bmod p) \cdot(b \bmod p)) \bmod p=(a \cdot b) \bmod p$.
- $\left(g^{a} \bmod p\right)^{b} \bmod p=\left(g^{a}\right)^{b} \bmod p$.

In fact, all these mod $p$ operations are best viewed in the context of the finite field $Z_{p}^{*}$ (learned in algebra courses).

## Diffie Hellman Key Exchange (1976)

- Public parameters: A large prime $p$ (1024 bit long, say) and a random element $g$ in in the range $1<g<p-1$.
- Alice chooses at random an integer $a$ from the interval [2..p-2]. She sends $x=g^{a}(\bmod p)$ to Bob (over the insecure channel).
- Bob chooses at random an integer $b$ from the interval $[2 . . p-2]$. He sends $y=g^{b}(\bmod p)$ to Alice (over the insecure channel).
- Alice, holding $a$, computes $y^{a}=\left(g^{b}\right)^{a}=g^{b a}(\bmod p)$.
- Bob, holding $b$, computes $x^{b}=\left(g^{a}\right)^{b}=g^{b a}(\bmod p)$.
- Now both have the shared secret, $g^{b a}(\bmod p)$.
- An eavesdropper cannot infer the key, $g^{b a}(\bmod p)$ after seeing "only" $p, g, x=g^{a}(\bmod p)$ and $y=g^{b}(\bmod p)$
(under the assumption that discrete log is intractable).
- We have just witnessed a small miracle !


## Diffie Hellman Key Exchange (1976)

Public: Large prime $p$, and some $g(1<g<p)$

Alice


Bob
Secret: random $b$ $(1<b<p)$
( $1<a<p$ )


$$
\begin{aligned}
& y^{a} \bmod p \\
= & \left(g^{b} \bmod p\right)^{a} \bmod p \\
= & g^{a b} \bmod p
\end{aligned}
$$

computation
(one pow each)

$$
\begin{aligned}
& x^{b} \bmod p \\
= & \left(g^{a} \bmod p\right)^{b} \bmod p \\
= & g^{a b} \bmod p
\end{aligned}
$$

## Diffie Hellman Key Exchange in Python

- We show a centralized simulation of DH:

```
def DH_exchange():
    """ generates a shared DH key """
    n = int(input("How many bits for the prime number? "))
    p = find_prime(n)
    print("p =",p, "a large prime")
    g = random.randint (2,p-1)
    print("g =",g, "random 1<g<p")
    print()
    a = random.randint(2,p-1)# Alice's secret
    print("a = ? random secret of Alice")
    b = random.randint (2,p-1) # Bob's secret
    print("b = ? random secret of Bob")
    print()
    x = pow (g,a,p) #Alice's transmission
    print("x =",x, "Alice sends to Bob x = g**a%p")
    y = pow (g,b,p) #Bob's transmission
    print("y =",y, "Bob sends to Alice y = g**b%p")
    print()
    key_A = pow(y,a,p) #shared key on Alice's side
    print("key_A =", key_A, "shared key on Alice's side y**a%p")
    key_B = pow(x,b,p) #shared key on Bob's side
    print("key_B =", key_B, "shared key on Bob's side x**b%p")
    if key_A != key_B:
```

        print("This_can't happen!", key_A, "!=", key_B)
    ```
```

        print("This_can't happen!", key_A, "!=", key_B)
    ```

\section*{Diffie Hellman Key Exchange in Python}
```

>>> DH_exchange()
How many bits for the prime number? 3
p = 5 a large prime
g = 3 random 1<g<p
a = ? random secret of Alice
b = ? random secret of Bob
x = 2 Alice sends to Bob x = g**a%p
y = 1 Bob sends to Alice y = g**b%%p
key_A = 1 shared key on Alice's side y**a%p
key_B = 1 shared key on Bob's side x**bo%p

```

\section*{Diffie Hellman Key Exchange in Python}
```

>>> DH_exchange()
How many bits for the prime number? 512
P = 76408956725766802650816233519537749504270125661267725510051894
30191777741144188224220983820233967052819809253590269660223531
186517885671160155025962442753 a large prime
g = 75833798851986284491957134475181226554174087864611000365740444
26626289480473740714146618930740705486502431738716572984462773
954440798617041661144036440008 random 1<g<p
a = ? random secret of Alice
b = ? random secret of Bob
x = 52915465811330496689020942696629622072357541737135533441580390
27847467909963019776488970658020981191527630831584751106485341
082242529963429559721189942463 Alice sends to Bob x = g**a%p
y = 21055367647085232186386571106555513396885867780134244650385405
97756443462764193073099628548934144837377760660612854806501190
813263574375780236807493604712 Bob sends to Alice y = g**b%p
key_A = 3757814157424326770605057448102820498331116479265196100321
5901263711170130759929166621710543994302222852279832056640
65763888742251616928842459709182283154 shared key on Alice's side y**a%p
key_B = 3757814157424326770605057448102820498331116479265196100321
5901263711170130759929166621710543994302222852279832056640

## Diffie Hellman - Final Remarks

- Recall that the length of the prime $p$ in bits is $n=\left\lfloor\log _{2} p\right\rfloor+1$.
- Computation time for exchanging the key is $O\left(\left(\log _{2} p\right)^{3}\right)=O\left(n^{3}\right)$ bit operations.
- DH key exchange is at most as secure as discrete log.
- Formal equivalence between DH (Diffie-Hellman key distribution) and DL (discrete logarithm problem) has never been proved, though some partial results are known.
- Over the last 36 years there were many attempts to crack the scheme. None succeeded, and DH key exchange (with an appropriately large prime $p$, e.g. 1024 bits) is considered secure.
- U.S. Patent 4,200,770, now expired, describes the algorithm and credits Hellman, Diffie, and Merkle as inventors, and the three of them have joined the Hall of Fame.

