
Extended Introduction to Computer Science
CS1001.py

* Slides based on a course designed by Prof. Benny Chor

Michal Kleinbort, Amir Rubinstein

School of Computer Science
Tel-Aviv University

Fall Semester 2023-24
http://tau-cs1001-py.wikidot.com

Intro to object oriented programming
(OOP)

and Data Structures

Chapter G
Lecture 14a

http://tau-cs1001-py.wikidot.com/

Plan for the next lectures

• Intro to object oriented programming
(OOP)

• Data Structures

1. Linked Lists (today? Probably not)

2. Binary Search Trees

3. Hash tables

4. Iterators and generators

2

Object Oriented Programming (OOP)

• OOP is a major theme in programming language design,
starting with Simula, a language for discrete simulation, in
the 1960s. Then Smalltalk in the late 1970s (out of the
legendary Xerox Palo Alto Research Center, or PARC, where
many other ideas used in today's computer environment
were invented). Other “OOP languages” include Eiffel, C++,
Java, C#, and Scala.

• Python supports object oriented style programming (maybe
not up to the standards of OOP purists). We'll describe some
facets, mostly via concrete examples. A more systematic study
of OOP will be presented in Tochna 1, using Java.

3

Object Oriented Programming (OOP),
cont.

• Entities in programs are modeled as objects. They represent
encapsulations that have their own:
1) attributes (also called fields), that represent their state

2) methods, which are functions or operations that can be performed
on them. Creation and manipulation of objects is done via their
methods.

• The object oriented approach enables modular design. It
facilitates software development by different teams, where
each team works on its own object, and communication
among objects is carried out by well defined methods'
interfaces.

4

Classes and Objects
• We already saw that classes represent data types. In addition

to the classes/types that are provided by python (e.g., str,
list, int), programmers can write their own classes.

• A class is a template to generate objects. The class is a part of
the program text. An object is generated as an instance of a
class.

• As we indicated, a class includes data attributes (fields) to
store the information about the object, and methods to
operate on them.

5

6

Let’s think about classes we would
like to implement …
What fields would they have?

What methods will they include?

Student Class - Executions
>>> s1 = Student("Donald", "Trump", 123456789)

>>> s1

<Donald, 123456789>

>>> s1.update_grade("CS1001", 91)

>>> s1.grades

{'CS1001': 91}

>>> s1.update_grade("HEDVA", 90)

>>> s1.update_grade("CS1001", 98) #he appealed

>>> s1.grades

{'HEDVA': 90, 'CS1001': 98}

>>> s1.avg()

94.0

>>> s2 = Student("Vladimir", "Putin", 888888888)

>>> s2.update_grade("Algebra", 95)

>>> s2.update_grade("CS1001", 100)

>>> print(s2, s2.grades, s2.avg())

<Vladimir, 888888888> {'CS1001': 100, 'Algebra': 95} 97.57

Building Class Student
class Student:

def __init__(self, name, surname, ID):

self.name = name

self.surname = surname

self.id = ID

self.grades = dict()

def __repr__(self): #must return a string

return "<" + self.name + ", " + str(self.id) + ">"

def update_grade(self, course, grade):

self.grades[course] = grade

def avg(self):

s = sum([self.grades[course] for course in self.grades])

return s / len(self.grades)

8

__init__and __repr__
are special standard methods,
with pre-allocated names.
More on this coming soon.

Student Class (cont.)

• The Student class has 4 fields: name, surname, id and a
dictionary of grades in courses. These fields can be accessed
directly, and values can be assigned to them directly.

• The methods (operations) of the class are:
• __init__ used to create and initialize an object in this class
• __repr__ used to describe how an object is represented

(when printing such an object).

• update_grade used to insert a new grade or update an
existing one

• avg returns the average of the student in all the courses

9

The constructor __init__

• __init__ is called when the class name is written, followed
by parameters in ().

Student("Donald", "Trump", 123456789)

• The fields of the class we are defining exist because they are
initialized in the __init__ method.

• So the variable s1.name is the field named name in the
object s1.

10

Who is self (or: who am I)?

• The first parameter of every method represents the current
object (an object of the class which includes the method).
By convention, we use the name self for this parameter.

• so self.name is the field named name in the current
object.

• When calling a method, this parameter is not given explicitly
as the first parameter, but rather as a calling object

11

Calling methods

12

>>> s1 = Student("Donald", "Trump", 123456789)

>>> Student.update_grade(s1, "HEDVA", 90)

>>> Student.avg(s1)

90

• We have seen that we call a method by its full name, preceded
by an object of the appropriate class, for example s1.avg().

• But we can also call it using the name of the class (rather than a
specific object). In this case the first parameter will be the
calling object:

Special Methods

13

• There are various special methods, whose names begin and end with __
(double-underscore). These methods are invoked (called) when specific
operators or expressions are used.

• Following is a partial list. The full list and more details can be found at:
https://diveintopython3.net/special-method-names.html

You Want… So You Write… And Python Calls…

to initialize an instance of class MyClass x = MyClass() x.__init__()

the “official” representation as a string print(x) x.__repr__()

addition x + y x.__add__(y)

subtraction x - y x.__sub__(y)

multiplication x * y x.__mul__(y)

equality x == y x.__eq__(y)

less than x < y x.__lt__(y)

for collections: to know whether it contains a specific value k in x x.__contains__(k)

for collections: to know the size len(x) x.__len__()

… (many more)

https://diveintopython3.net/special-method-names.html

Student Class, Defining Equality

14

>>> s1 = Student("Donald", "Trump", 123456789)

>>> s1

<Donald, 123456789>

>>> s2 = Student("Donald", "Trump", 123456789)

>>> s2

<Donald, 123456789>

>>> s1==s2

False #Hah??

Student Class, Defining Equality (2)

15

def __eq__(self, other):

assert isinstance(other, Student)

return self.id == other.id

• Unless otherwise defined, Python compares objects by
their memory address.

• __eq__ is a special method that determines when two
objects (in this case) lines are equal.

>>> s1 = Student("Donald", "Trump", 123456789)

>>> s2 = Student("Donald", "Trump", 123456789)

>>> s1 == s2 # __eq__ is called , same as s1.__eq__(s2)

True #☺

Information hiding (for reference only)

• One of the principles of OOP is information hiding: The
designer of a class should be able to decide what
information is known outside the class, and what is not. In
most OOP languages this is achieved by declaring fields
and methods as either public or private.

• In python, a field whose name starts with two _ symbols,
will be private. It will be known inside the class, but not
outside.

• A private field cannot be written (assigned) outside the
class, and its value cannot be read (inspected), because its
name is not known. The class then provides methods to
access and modify the state of the object in the “legal”
way.

16

OOP and Python
• Python provides the basic ingredients for OOP, including

inheritance (that we will not discuss).

• However, we do not have the full safety that strict OOP
languages have . “Private” fields are accessible with mangled
names, a client may add a field to an object, etc. In short,
there is no way to enforce data hiding in python, it is all
based on convention.

• The language puts more emphasis on flexibility.

• In this course we will not use private fields to simplify the
code (rather than adhere to OOP). This is the common style
in python.

• The course Software 1 (in Java) places OOP at the center.

17

Designing classes in OOP
The recommended way to design a class is to

1) first decide what operations (methods) the class should
support. This would be the API (Application Program
Interface or contract) between the class designer and the
clients (users).

2) then decide how to represent the state of objects (which
fields), so that the operations can be performed efficiently,
and implement a constructor (__init__).

3) then implement (write code for) the methods.

This way we can later change the representation (eg. change
from Cartesian to Polar representation of points), while the
client code is unchanged.

18

	Slide 1: Extended Introduction to Computer Science CS1001.py
	Slide 2: Plan for the next lectures
	Slide 3: Object Oriented Programming (OOP)
	Slide 4: Object Oriented Programming (OOP), cont.
	Slide 5: Classes and Objects
	Slide 6
	Slide 7: Student Class - Executions
	Slide 8: Building Class Student
	Slide 9: Student Class (cont.)
	Slide 10: The constructor __init__
	Slide 11: Who is self (or: who am I)?
	Slide 12: Calling methods
	Slide 13: Special Methods
	Slide 14: Student Class, Defining Equality
	Slide 15: Student Class, Defining Equality (2)
	Slide 16: Information hiding (for reference only)
	Slide 17: OOP and Python
	Slide 18: Designing classes in OOP

