
Extended Introduction to Computer Science
CS1001.py

* Slides based on a course designed by Prof. Benny Chor

Michal Kleinbort, Amir Rubinstein

School of Computer Science
Tel-Aviv University

Fall Semester 2023-24
http://tau-cs1001-py.wikidot.com

Data Structures 1: Linked ListsChapter G
Lecture 14b

http://tau-cs1001-py.wikidot.com/

Overview

✓ Intro to Object Oriented Programming (OOP)

• Data Structures

1. Linked Lists ( today)

2. Binary Search Trees

3. Hash tables

4. Iterators and generators

2

This Lecture Plan

• Intro to Data Structures

• Python Lists vs. Linked Lists

• Implementation for class Linked_list

3

Data Structures
• A data structure is a way to organize data in memory as to support

various operations of the data.

• The choice of data structures for a particular problem depends on the
desired operations and complexity constraints (time and memory).

• We have seen some built-in Python data structures: strings, tuples,
lists, dictionaries. In fact, "atomic" types, such as int or float, may also
be considered structures, albeit primitive ones.

• To distinguish the functionality of a class from its concrete
implementation, The term Abstract Data Type (ADT) is often used. It
emphasizes the point that the user (client) needs to know what
operations are allowed, but not how they are implemented.

• OOP supports this approach naturally, as we have seen

4

Representing Lists in Python
• We have extensively used Python's built-in lists.

• As we already know, “under the hood", a Python list is stored as an arrays:
a contiguous space of pointers used as references to (addresses of) other
objects (each pointer normally takes 32/64 bits).

• A list basically keeps the address

of the beginning of this array in

memory, plus its length.

5

76
5

L = [5,6,7]

list

int
int int

3

int

array
size

“Random Access”

• The fact that the list stores pointers, and not the elements themselves,
enables Python's lists to contain objects of heterogeneous types
(something not possible in some other programming languages).

• But most importantly, this makes accessing/modifying a list element,
lst[i], an operation whose cost is O(1) - independent of the size of the
list or the value of the index. This is termed random access.

• If the address in memory of lst[0] is a, and assuming each pointer takes
64 bits, then the address in memory of lst[i] is simply a+64i.

6
a a+64 a+2⋅64 a+3⋅64 …
. . . .

Disadvantages of Random Access
• However, the contiguous storage of addresses must be

maintained when the list evolves.

• In particular if we want to insert/delete an item at location i,
all items from location i onwards must be “pushed“
forward/backward.
• O(n) operations in the worst case for lists with n elements.

• Moreover, if we use up all of the memory block allocated for
the list, we may need to move items to get a block of larger
size (possibly starting in a different location).
• Comment: some cleverness is applied to improve the performance of

appending items repeatedly; when the array must be grown, extra
space is allocated right away, so the next few times do not require an
actual resizing (taken from this source).7

https://docs.python.org/3.8/faq/design.html#how-are-lists-implemented-in-cpython

The Alternative: Linked Lists
• An alternative to using a contiguous block of

memory, is to specify, for each item, the memory
location of the next item in the list.

• We can represent this graphically using a boxes-and-
pointers diagram.

8

x y z w

head
size 4

The Alternative: Linked Lists
• We will implement two classes. One for nodes in the list, and another one

to represent the list.

• We will try to keep the interface (names of methods and how they are used)
the same as for Python lists. For example:

lst = Linked_list() #empty linked list

lst.insert(0,3) #insert 3 at position 0

lst.insert(0,5)

lst.insert(1,4)

lst.insert(2,7)

print(len(lst))

print(lst)

print(lst[2])

print(lst.index(7))

lst.pop(0) #remove element at position 0

lst[1] = 999

print(lst)9

4

[5, 4, 7, 3]

7

2

[4, 999, 3]

class Node

• Class Node is very simple, holding just two fields, as illustrated in
the diagram.

class Node:

def __init__(self, val):
self.value = val
self.next = None

def __repr__(self):
return str(self.value)

10

value next

class Linked_list

class Linked_list:
def __init__ (self):

self.head = None
self.size = 0

11

None

head
size 0

my_lst

>>> my_lst = Linked_list()

Linked List Operations:
Insertion at the Start

def add_at_start(self, val):

''' add node with value val at the list head '''

tmp = self.head

self.head = Node(val)

self.head.next = tmp

self.size += 1

• Note: time complexity is O(1) in the worst case!

12

Memory View (1)

13

None

my_lst

>>> my_lst = Linked_list()

head
size 0

def __init__(self):
self.head = None
self.size = 0

Memory View (2)

14 my_lst

>>> my_lst.add_at_start("a")

head
size 0

tmp

None

def add_at_start(self, val):
tmp = self.head
self.head = Node(val)
self.head.next = tmp
self.size += 1

Memory View (2)

15 my_lst

>>> my_lst.add_at_start("a")

class Node:
def __init__(self, val):

self.value = val
self.next = None

head
size 0

tmp

None

"a"

value next

None

def add_at_start(self, val):
tmp = self.head
self.head = Node(val)
self.head.next = tmp
self.size += 1

Memory View (2)

16 my_lst

>>> my_lst.add_at_start("a")

head
size 0

"a"

value next

None

tmp

None

def add_at_start(self, val):
tmp = self.head
self.head = Node(val)
self.head.next = tmp
self.size += 1

Memory View (2)

17 my_lst

>>> my_lst.add_at_start("a")

head
size 1

"a"

value next

None

tmp

None

def add_at_start(self, val):
tmp = self.head
self.head = Node(val)
self.head.next = tmp
self.size += 1

Memory View (end of first insert)

18 my_lst

>>> my_lst.add_at_start("a")

head
size 1

"a"

value next

None

def add_at_start(self, val):
tmp = self.head
self.head = Node(val)
self.head.next = tmp
self.size += 1

Memory View (2)

19

"a"

value next

None

my_lst

>>> my_lst.add_at_start("b")

head
size 1

tmp

def add_at_start(self, val):
tmp = self.head
self.head = Node(val)
self.head.next = tmp
self.size += 1

Memory View (2)

20

"a"

value next

None

my_lst

>>> my_lst.add_at_start("b")

class Node:
def __init__(self, val):

self.value = val
self.next = None

head
size 1

tmp

value next

"b" None

def add_at_start(self, val):
tmp = self.head
self.head = Node(val)
self.head.next = tmp
self.size += 1

Memory View (2)

21

"a"

value next

None

my_lst

>>> my_lst.add_at_start("b")

class Node:
def __init__(self, val):

self.value = val
self.next = None

head
size 1

tmp

value next

"b" None

def add_at_start(self, val):
tmp = self.head
self.head = Node(val)
self.head.next = tmp
self.size += 1

Memory View (2)

22

"a"

value next

None

my_lst

>>> my_lst.add_at_start("b")

head
size 1

tmp

value next

"b"

def add_at_start(self, val):
tmp = self.head
self.head = Node(val)
self.head.next = tmp
self.size += 1

Memory View (3)

23

value next

None

my_lst

>>> my_lst.add_at_start("b")

value next

head
size 2

"a""b"

def add_at_start(self, val):
tmp = self.head
self.head = Node(val)
self.head.next = tmp
self.size += 1

tmp

Memory View (end of second iteration)

24

value next

None

my_lst

>>> my_lst.add_at_start("b")

value next

head
size 2

"a""b"

def add_at_start(self, val):
tmp = self.head
self.head = Node(val)
self.head.next = tmp
self.size += 1

Memory View (4)

25

value next

None

my_lst

>>> my_lst.add_at_start("c")

value nextvalue next

class Node():
def __init__(self, val):

self.value = val
self.next = None

head
size 3

"a""b""c"

def add_at_start(self, val):
tmp = self.head
self.head = Node(val)
self.head.next = tmp
self.size += 1

Memory View (5)

26

value next

my_lst

>>> my_lst.add_at_start("d")

value nextvalue nextvalue next

class Node():
def __init__(self, val):

self.value = val
self.next = None

head
size 4

None"a""b""c""d"

def add_at_start(self, val):
tmp = self.head
self.head = Node(val)
self.head.next = tmp
self.size += 1

Linked List Operations : __repr__

27

def __repr__(self):
out = ""
p = self.head
while p != None :

out += p.__repr__() + ", "
p = p.next

return "[" + out[:-2] + "]"

value next

my_lst

value nextvalue nextvalue next

head
size 4

None"a""b""c""d"

>>> print(my_lst) #calls __repr__ of class Linked_list

[d, c, b, a]

Linked List Operations:
length

• The time complexity is O(1)

• But recall the field size must be updated when inserting /
deleting elements

28

>>> len(my_lst)

4

>>> my_lst.__len__() #same same

4

>>> my_lst.size #same same, direct access to the data

4

called when using Python's len()def __len__(self):

return self.size

Linked List Operations: Index

• Time complexity: worst case O(n), best case O(1)
29

def find(self, val):
''' find index of (first) node with value val in list

return None of not found '''
p = self.head
i = 0 # we want to return the location
while p != None:

if p. value == val:
return i

else :
p = p.next
i += 1

return None # not found

Tip: Use PythonTutor

• Link

• For better visualization, choose the following
parameters:

30

https://tinyurl.com/yc2uywny

Special Standard Method __getitem__

• The argument i must be between 0 and the length of the list
(otherwise assert will notify an error).

• Time complexity: O(i+1). In the worst case (i = n-1) this is O(n).31

called when using L[i] for reading

>>> my_lst[2]

'b'

>>> my_lst.__getitem__(2) #same same

'b'

>>> my_lst.head.next.next.value #same same but don’t!

'b'

def __getitem__(self, i):

assert 0 <= i < len(self)

p = self.head

for j in range(0, i):

p = p.next

return p.value

Special Standard Method __setitem__

• The argument i must be between 0 and the length of the list
(otherwise assert will notify an error).

• Time complexity: O(i+1). In the worst case (i = n-1) this is O(n).
32

called when using L[i] for writing

>>> my_lst[1] = 999 #same as my_lst.__setitem__(1,999)

>>> print(my_lst)

[d, 999, b, a]

def __setitem__(self, i, val):

assert 0 <= i < len(self)

p = self.head

for j in range(0, i):

p = p.next

p.value = val

return None

Linked List Operations:
Insertion at a Given Location

• Note: elements after index i implicitly move one position forward
• When i=0 we get the same effect as add_at_start, which updated

the list head. Note that i=n is allowed.
• Time complexity: O(i+1). In the worst case (i = n) this is O(n).

33

def insert(self, i, val):
assert 0 <= i <= len(self)
if i == 0:

self.add_at_start(val)
else:

p = self.head
for j in range(0, i-1):

p = p.next
tmp = p.next
p.next = Node(val)
p.next.next = tmp
self.size += 1

def add_at_start(self, val):
tmp = self.head
self.head = Node(val)
self.head.next = tmp
self.size += 1

Linked List Operations:
Deletion at a Given Location

• Python Garbage collector will
“remove" the deleted item
(assuming there is no other
reference to it) from memory.

• Note: In some languages (e.g.
C, C++) the programmer is
responsible to explicitly free
unused memory

34

def pop(self, i):
''' delete element at location i '''
assert 0 <= i < len(self)
if i == 0:

self.head = self.head.next
else:

p = self.head
for j in range(0, i-1):

p = p.next
p is the element BEFORE i’th
p.next = p.next.next

self.size -= 1

• Note: elements after index i implicitly move one position backward
• When i=0, list head must be updated

• Time complexity: O(i+1). In the worst case (i = n-1) this is O(n).

Comment on Deletion by Value
• How would you delete an item with a given value (not location)?

• Searching and then deleting the found item presents a (small)
technical inconvenience: in order to delete an item, we need
access the item before it.

• A possible solution would be to keep a 2-directional linked list,
aka doubly linked list (each node points both to the next node
and to the previous one).
• This requires, however, O(n) additional memory (compared to a 1-

directional linked list).

35

An Extended __init__

• Suppose we wanted to allow the initialization of a Linked_list object
that will not be initially empty. Instead, it will contain an existing
Python's sequence (e.g. list, string, tuple) upon initialization.

• We employ add_at_start(ch) for efficiency reasons, as each such
insertion takes only O(1) operations, and overall O(len(seq)).

• Additionally, we could easily avoid slicing (used here to reverse)

36

class Linked_list:
def __init__(self, seq=None):

self.head = None
self.len = 0
if seq != None:

for ch in seq[::-1]:
self.add_at_start(ch)

>>> L = Linked_list("abc")

>>> print(my_lst)

[a, b, c]

Linked Lists vs. Python Lists:
Complexity Summary

37

Operation Worst case time complexity
– Linked lists

Worst case time complexity
– Python lists

Insertion after a given
element (or at start)

O(1) O(n)

Insertion at position i O(n) O(n)

Get or modify the i‘th
element

O(n) O(1)

Delete, given previous
element

O(1) O(n)

Delete at position i O(n) O(n)

	Slide 1: Extended Introduction to Computer Science CS1001.py
	Slide 2: Overview
	Slide 3: This Lecture Plan
	Slide 4: Data Structures
	Slide 5: Representing Lists in Python
	Slide 6: “Random Access”
	Slide 7: Disadvantages of Random Access
	Slide 8: The Alternative: Linked Lists
	Slide 9: The Alternative: Linked Lists
	Slide 10: class Node
	Slide 11: class Linked_list
	Slide 12: Linked List Operations: Insertion at the Start
	Slide 13: Memory View (1)
	Slide 14: Memory View (2)
	Slide 15: Memory View (2)
	Slide 16: Memory View (2)
	Slide 17: Memory View (2)
	Slide 18: Memory View (end of first insert)
	Slide 19: Memory View (2)
	Slide 20: Memory View (2)
	Slide 21: Memory View (2)
	Slide 22: Memory View (2)
	Slide 23: Memory View (3)
	Slide 24: Memory View (end of second iteration)
	Slide 25: Memory View (4)
	Slide 26: Memory View (5)
	Slide 27: Linked List Operations : __repr__
	Slide 28: Linked List Operations: length
	Slide 29: Linked List Operations: Index
	Slide 30: Tip: Use PythonTutor
	Slide 31: Special Standard Method __getitem__
	Slide 32: Special Standard Method __setitem__
	Slide 33: Linked List Operations: Insertion at a Given Location
	Slide 34: Linked List Operations: Deletion at a Given Location
	Slide 35: Comment on Deletion by Value
	Slide 36: An Extended __init__
	Slide 37: Linked Lists vs. Python Lists: Complexity Summary

