
Extended Introduction to Computer Science
CS1001.py

* Slides based on a course designed by Prof. Benny Chor

Michal Kleinbort, Amir Rubinstein

School of Computer Science
Tel-Aviv University

Fall Semester 2023-24
http://tau-cs1001-py.wikidot.com

Chapter G
Lecture 15

Data Structures 2:
Binary Search Trees

http://tau-cs1001-py.wikidot.com/


Data Structures

1. Linked Lists 

2. Binary Search Trees

3. Hash Tables

4. Generators

2



Lecture Plan

• Trees, binary trees, and binary search Trees

• Operations: Insert and Lookup (search)

• Implementation of class Binary_search_tree

• Additional operations: minimum, depth

3



Applications of Trees
• We have seen trees earlier in the course, 

illustrating the execution of recursive functions.

• Trees are extensively used for many applications, such as: 
• Illustration of program flow (as above)

• Representation of arithmetic expressions

• Illustration of games

• Evolutionary processes (e.g. tree of life)

• …

• We will now explore how trees can be used to 

store and search data

4
Images from Wikipedia



Linked Data Structures
• Linked lists are just the simplest form of linked data structures, in which 

pointers are used to link objects linearly.

• Another linked structure is a binary search tree, where each element 
points to its left and right child, corresponding to smaller and larger
elements, respectively. 

5

1st item 2nd item 3rd item …



Graphs and Trees
• A graph is a structure containing nodes (or vertices) and edges. An edge 

connects two nodes.

• In directed graphs, edges have a direction (go from one node to another). 
In undirected graphs, the edges have no direction.

• Trees may be defined as a special case of graphs. This is discussed in the 
course Discrete Mathematics (and used in many other, most notable 
Algorithms).

• Here, we will only discuss a common form of  trees called rooted binary 
trees, which will be defined next, using recursion.

• From now on we will simply use the term tree instead. 

6

Example: undirected graph.
Drawing from wikipedia



Rooted Binary Trees - Definition

• A rooted binary tree

- contains no nodes (empty tree), or

- is comprised of three disjoint sets of nodes: 
➢ a root node,

➢ a binary tree called the left subtree, and 

➢ a binary tree called the right subtree 

• Note that this is a recursive definition.

• Rooted binary trees are a special case of the more general 
rooted trees, in which each node may have more than just 2 
children.

7



Rooted Binary Trees – Basic Notions
• An edge refers to the directed link from parent to child (the arrows in the 

picture of the tree)
• The root node of a tree is the (unique) node with no parents (usually drawn  

on top). 
• A leaf node has no children. Non leaf nodes are called internal nodes.

• A node p is an ancestor of a node q if p exists on the path from the root node 
to node q. The node q is then termed as a descendant of p.

• A subtree of a tree is a tree rooted at a child of the root.

8

root

leaf

leaf



Binary Search Trees

• Binary search trees are data structures used support 
operations like insert, search, delete, and other operations.

• Like in a linked list, each node in a binary search tree 
contains a single data record. 

• We assume each data record has a unique identifier, called 
the key. Two nodes cannot have the same key. 

• The keys are organized so that every node satisfies the order 
property shown in the next slide. 

9



Binary Search Tree Property

10

k

Right subtree, 
all keys > k

Left subtree, 
all keys  < k

• For each node, all the keys in the left/right subtrees are 
smaller/larger than the key in the current node, respectively. 

• Recall we assume keys are unique (no repetitions)



Demos of 
Insertion and Search

11

• Simulation:
https://www.cs.usfca.edu/~galles/visualization/BST.html

• Gif:

https://www.cs.usfca.edu/~galles/visualization/BST.html


Depth/ Height
• The depth of a node (denoted 𝑑) is the number of edges from the root to it.

• The depth of a tree is the depth of its deepest leaf
• Thus, a tree with only a single node has depth=0

• Instead of talking about depths, we may also talk in terms of heights: 
The height of a node (denoted ℎ) is the maximal number of edges from it to a 
descendant leaf. 

• The height of a tree is the height of its root
• Note: for a tree, depth = height

12

𝑑 = 0

𝑑 = 1

𝑑 = 2

𝑑 = 3ℎ = 0

ℎ = 1

ℎ = 3

ℎ = 2



Time Complexity
• In both insertion and lookup, time complexity is the length of the 

path we take from the root to the final node. This depends on two 
factors:

1) The shape of the tree, and particularly its depth. 
• In the worst case, may have to traverse the whole depth of the tree. 

2) The location in the tree of the searched node / place of insertion
• Even when the depth is large, this location may be close to the root

13

Three tree shapes containing the 
same set of keys.



Lookup and Insertion: 
Time Complexity

• Both lookup and insertion follow a path from the root to some node 
(the searched node or the place of insertion). At each node they 
“spend” 𝑂(1) time. So, The time complexity of both is the length of 
that path.

• The best case occurs when that path ends “near” the root, and takes 
O(1) time, regardless of the tree shape and size.

• The worst case occurs when we have to traverse a path from the root 
to the farthest (=deepest) leaf in the tree. In other words, we need to 
descent the full depth of the tree.
• In a totally unbalanced tree, this yields 𝑂(𝑛) time
• However, if the tree is balanced, this takes 𝑂(log 𝑛) time.

14



15

Totally Unbalanced Binary Tree

• Each node has only one non-empty subtree. 

• The depth 𝑑 of such a tree with 𝑛 nodes is  

𝑑 = 𝑛 − 1 = O(𝑛).

• What insertion order yields this tree?



16

Complete (totally balanced) Binary Tree

• When all the leaves are in the same level, and all internal nodes 
have degree exactly 2, we have

𝑛 = σ𝑖=0
𝑑 2𝑖 = 2𝑑+1 − 1

• Such trees are called complete. 
• Their depth satisfies 𝑑 = ⌈log2(n+1)−1⌉ = 𝑂(log 𝑛).

• What insertion orders yield this tree?

6

4 8

7 91 5



Comment on Balanced Trees
• A tree is called balanced if its depth 𝑑 satisfies 𝑑 = 𝑂(𝑙𝑜𝑔𝑛)

(need not be complete)

• In cases where we have control on the order of insertion of nodes 
to the tree, we can build the tree such that it becomes balanced. 

• Furthermore, there are several types of self-balancing trees: trees 
that rebalance themselves to satisfy 𝑑 = 𝑂(𝑙𝑜𝑔𝑛) at any time 
point, regardless of the order insertions/deletions
• you will meet some in the Data Structure course

• In fact, even without such self-balancing mechanism, random
order of insertion is likely to produce a balanced tree (albeit not a 
complete binary tree). 

18



Self-balancing Trees (for reference only)

19

Figure from MIT algorithms course, 2008. Shows item insertion in an AVL tree.



20

Comic Relief *

הצעות לתמונות שיופיעו על שקפים אלו לאורך הסמסטרנולאתכם לשלוח ניםמזמיואנ* 

A binary tree with 16 leaves.

Courtesy of Dr. Shlomit Pinter, 

photo taken in Kenya, 2005



Binary Search Tree: Python Code
• A tree node will be represented by class Tree_node.

• We allow for each record to hold some value, in addition to the key by 
which the tree is ordered (for example, keys are IDs, and values are 
names/addresses etc.)

21

class Tree_node:

def __init__(self, key, val):

self.key = key

self.val = val

self.left = None

self.right = None

def __repr__(self):

return str(self.key) + ":" + str(self.val)

key

val

rightleft



key

val

rightleft

Binary Search Tree Class

22

class Binary_search_tree:

def __init__(self):

self.root = None

self.size = 0

key

val

rightleft

key

val

rightleft

root size
root size

None

0 3

after some insertions



Binary Search Tree __repr__

• Representation of a tree can be done recursively.
• We will use a rather sophisticated implementation donated 

by a former student in our course – Amitai Cohen. 
• You do not need to understand it.
• This implementation appears in the file printree.py.

23

from printree import *

class Binary_search_tree:

def __repr__(self):

out = ""

for row in printree(self.root): # need printree.py file

out = out + row + "\n"

return out



Binary Search Tree __repr__

>>> t = Binary_search_tree() 

>>> t.insert(5,"a")

>>> t.insert(2,"b")

>>> t.insert(3,"c")

>>> t.insert(7,"d")

>>> t.insert(8,"e")

>>> print(t)

5          

______/ \__       

2           7      

/ \__       / \__   

#     3     #     8  

/ \ / \

#   #       #   #
24

Ain't it cool?

Will see insert right away.



Binary Search Tree: lookup (search)

25

def lookup(self, key):

''' return val of node with key if exists, else None '''

node = self.root

while node != None:

if key == node.key:

return node.val # found!

elif key < node.key:

node = node.left

else:

node = node.right

return None



Binary Search Tree: insert

26

• We first look for the appropriate location for insertion, and 
then “hang” the new node as a left/right child.

• To that end, while descending we need to keep a pointer to 
the last node encountered.

• Note that the new node is always added as a leaf.

• If the user inserts an element whose key already exists in 
the tree, we assume that it should replace the one in the 
tree, that is, the value of the node should be updated and 
no new node is added to the tree. 



Binary Search Tree: insert

27

def insert(self, key, val):

''' insert node with key,val into tree.

if key already there, just update its value '''

parent = None # this will be the parent of the new node

node = self.root

while node != None: # keep descending the tree

if key == node.key:

node.val = val # update the val for this key

return

parent = node

if key < node.key:

node = node.left

else:

node = node.right

if parent == None: # was empty tree, need to update root

self.root = Tree_node(key, val)

elif key < parent.key: 

parent.left = Tree_node(key, val) # "hang" new node as left child

else:  

parent.right = Tree_node(key, val) # "hang"    ...     right child

self.size += 1

return None



Operation: minimum

• To compute the element with the minimal key in a binary 
search tree, we need to go all the way to the left:

• Complexity (worst and best cases)?
28

def minimum(self):

''' return value of node with minimal key '''

if self.root == None:

return None # empty tree has no minimum

node = self.root

while node.left != None:

node = node.left

return node.val



Time Complexity of minimum

• The time complexity of min is the length of the path from the 
root to the leftmost node.

• The best case occurs when the left subtree is empty (the left 
pointer in the root is None). In this case, the smallest item is 
at the root. The best case time complexity is O(1).

• The worst case occurs in a totally unbalanced tree in which all 
right subtrees are empty, (the tree is a “left chain”) so the 
length of path to the minimum is 𝑛 − 1, and the time 
complexity is 𝑂(𝑛). 

• The worst case in a balanced tree is 𝑂(log 𝑛).

29



Operation: depth
• To compute the depth, we use a recursive function, using the 

equation: 𝑑 𝑣 = 1 +max{𝑑 𝑣. 𝑙𝑒𝑓𝑡 , 𝑑(𝑣. 𝑟𝑖𝑔ℎ𝑡)}

• Note that we need two recursive calls from each node.  

• By convention, an empty tree has depth -1

30

def depth(self):

''' return depth of tree, uses recursion '''

def depth_rec(node):

if node == None:

return -1

else:

return 1 + max(depth_rec(node.left), depth_rec(node.right))

return depth_rec(self.root)



Time Complexity of depth

• Time complexity is linear in the size of the tree, O(n), 
regardless of the tree shape (and depth).

• This follows from the observation that every node is visited 
once, with O(1) time spent on each one.

• How does the recursion tree look like? 

31



Binary Search Tree: 
Complexity of our Implementation

32

worst case for 
balanced trees

worst case for 
any tree

best case

𝑂(log 𝑛)𝑂(𝑛)𝑂(1)Insert / lookup / 
minimum

𝑂(𝑛)𝑂(𝑛)𝑂(𝑛)depth 

• Note that insert / lookup / minimum traverse a single path from the root, 
while depth traverse the whole tree. 



Binary Search Tree: 
Concluding Remarks

• We could implement lookup, insert and minimum with recursion. This, 
however, would not improve time complexity, and in fact would probably 
increase actual running time, and would also require more memory (why?).

• A function to delete a node is a little harder to write, and is omitted here.

• We can ask what the average time complexity of lookup and insert is. The 
average can be taken over which node we search (in a given tree), or over 
which tree shape we have (with a given element to search), or both. 

• We observed that the shape of the tree depends on the sequence of inserts 
(and deletions) that generated the tree. If we are able to keep the tree 
balanced at all times, we will have an efficient way to store and search data in 
𝑂(𝑙𝑜𝑔𝑛) time. 

• You will encounter most of these issues (and more) in the Data Structures
course.33


	Slide 1: Extended Introduction to Computer Science CS1001.py
	Slide 2: Data Structures
	Slide 3: Lecture Plan
	Slide 4: Applications of Trees
	Slide 5: Linked Data Structures
	Slide 6: Graphs and Trees
	Slide 7: Rooted Binary Trees - Definition
	Slide 8: Rooted Binary Trees – Basic Notions
	Slide 9: Binary Search Trees
	Slide 10: Binary Search Tree Property
	Slide 11: Demos of  Insertion and Search
	Slide 12: Depth/ Height
	Slide 13: Time Complexity
	Slide 14: Lookup and Insertion:  Time Complexity
	Slide 15
	Slide 16
	Slide 18: Comment on Balanced Trees
	Slide 19: Self-balancing Trees (for reference only)
	Slide 20
	Slide 21: Binary Search Tree: Python Code
	Slide 22: Binary Search Tree Class
	Slide 23: Binary Search Tree __repr__
	Slide 24: Binary Search Tree __repr__
	Slide 25: Binary Search Tree: lookup (search)
	Slide 26: Binary Search Tree: insert
	Slide 27: Binary Search Tree: insert
	Slide 28: Operation: minimum
	Slide 29: Time Complexity of minimum
	Slide 30: Operation: depth
	Slide 31: Time Complexity of depth
	Slide 32: Binary Search Tree:  Complexity of our Implementation
	Slide 33: Binary Search Tree:  Concluding Remarks

