Extended Introduction to Computer Science CS1001.py

Chapter G Data Structures 3:

Lecture 16 Hash Functions and Hash Tables

Michal Kleinbort, Amir Rubinstein

School of Computer Science Tel-Aviv University Fall Semester 2023-24 http://tau-cs1001-py.wikidot.com

^{*} Slides based on a course designed by Prof. Benny Chor

Data Structures

1. Linked Lists

2. Binary Search Trees

3. Hash tables

4. Generators

Lecture Plan

Hash functions

- Hash tables
 - Allow insert, delete, search in O(1) time "on average"
 - Collisions and resolving them with chaining
 - class Hashtable

"Hash"?

Definition (from the Merriam-Webster dictionary):

hash - transitive verb

1 a: to chop (as meat and potatoes) into small pieces

b: confuse, muddle

2 : to talk about: review -- often used with over or out

Synonyms: dice, chop, mince

Antonyms: arrange, array, dispose, draw up, marshal (also marshall), order, organize, range,

regulate, straighten (up), tidy

- In computer science, hashing has multiple meanings, often unrelated.
 - For example, universal hashing, perfect hashing, cryptographic hashing, and geometric hashing, have very different meanings.

- Common to all of them is a mapping from a large space into a smaller one.
- Today, we will study hashing in the context of hash tables

Hash Functions

- Hash function: a function that maps a large (possibly infinite) set to a smaller set of a fixed size.
- Example for a hash function from integers to integers:

```
def hash4int(n):
    m = 1000
    c = (5**0.5-1)/2 #some irrational, 0<c<1
    return int(m*((n*c)%1))</pre>
```

- Executions in class
- Note that this function spreads the (infinite) set of integers over a small finite range (0-999).
- But what can such a function be possibly good for? soon...

Hash Functions (cont.)

- Hash function: a function that maps a large (possible infinite) set to a smaller set of a fixed size.
- Example for a hash function from strings to integers:

```
def hash4strings(st):
    p = 2**120+451 # some arbitrary prime number
    x = 128
    s = 0
    for c in st:
        s = (x*s + ord(c)) % p
    return s
```

- Note that this function spreads the (infinite) set of strings over a finite range (0...p-1).
- But what can such a function be possibly good for? soon...

Python's Built-in hash Function

 Python comes with its own hash function, from any immutable type to integers (both negative and positive):

```
>>> hash("Michal")
5551611717038549197
>>> hash("Amir")
-6654385622067491745
>>> hash((3,4))
3713083796997400956
>>> hash([3,4])
Traceback (most recent call last):
    File "<pyshell #16 >", line 1, in <module >
          hash([3,4])
TypeError: unhashable type: 'list'
```

But what can such a function be possibly good for? soon...

Hashing with a Random Seed

- If you run this code yourself, you will probably encounter different outputs from those in the last slide
- This is because when IDLE starts, it randomly generates a number called seed, which is used to compute the built-in hash function
 - This is intended to provide protection against denial-of-service attacks caused by carefully-chosen inputs, designed to exploit a worst-case scenarios (which will be explained and analyzed soon).
- But as long as you work under the same instance of IDLE, hash is consistent and deterministic. So, consistency is kept for the lifetime of an IDLE session

Hash Tables: Definition

- Suppose elements belong to a large set (possibly infinite), called the "universe", denoted ${\it u}$
 - for example: all possible ID numbers, all possible strings, etc.
- We need to store some n elements from u, and n << |u|.
 - for example: ID's of students in class right now, genes of a specific organism
- We store the elements in a table T called hash table, whose size is $m \approx n$.
- To map elements from ${\it u}$ to ${\it T}$ we use a hash function $h\colon {\it u} \to \{0,1,...,m-1\}$ For example: $h={\rm hash}\,({\rm key})\,{\rm m}$

Element with key $k \in \mathcal{U}$ is stored (and searched for) at index h(k) in T.

Problem

 Handle collisions while providing efficient insert, delete, search

Collisions

• Collision: $h(k_1) = h(k_2)$ for $k_1 \neq k_2$

Can we totally avoid collisions?

<u>Pigeonhole principle</u>:

if n+1 pigeons enter n holes,
 at least 1 hole will contain at least 2 pigeons

- How can we decrease the probability for collisions?
 - Larger T
 - "Better" *h* (more on that soon)

Dealing with Collisions: Chaining Method

- Each cell in the table will contain a chain with all the current elements that h maps to this cell
- The chains can be implemented using Python's lists or linked lists

How do we insert, search and delete elements?

Simple (interactive) Example for ID's

We want to store all students who attended class today, by their ID.

- $u = \{ \text{all possible Israeli ID numbers } \}$ |u| = ?
- n=?
- |T| = m = 10
- (m=10)h(id) = id % m0 h(id) = id%m3 → [] 5 → [] 6 8

Implementing Insert, Delete, Search

- Initialization: create a table T with m empty lists
- Given an element with key $k \in \mathcal{U}$:
 - Search: compute i = h(k) and check if chain T[i] contains the key k.
 - Insert: compute i = h(k)if k not in the chain T[i], insert element to chain T[i]. otherwise? replace element or make no change.
 - <u>Delete</u>: compute i = h(k)if k in chain T[i], remove element from chain T[i].

Chaining – Time Complexity: Worst Case

- In each operation we compute h(k) and then iterate over a single chain
- The worst-case time complexity, for the three operations search, insert and delete in terms of n is O(n).
 - This happens when all the elements inserted were hashed to the same single cell
 - Assumption: computing h and comparing 2 elements both take O(1) time

Chaining – Time Complexity: Average

- The worst case may indeed occur. But assuming h was chosen carefully and spreads elements rather uniformly and independently, the worst case is very rare!
 - The definitions of "uniformly" and "independently" will be taught in a probability course.
 - The scenario is often described as throwing n balls into m bins. The distribution of balls in the bins (maximum load, number of empty bins, etc.) is a well studied topic in probability theory.

The figure is taken from a manuscript titled "Balls and Bins -- A Tutorial", by Berthold Vöcking (Universität Dortmund).

Chaining – Time Complexity: Average

- Assuming h indeed "spreads elements well", as mentioned above, it
 makes sense to measure complexity in terms of the average length of
 a chain (average over the distribution of elements in the table).
- Average chain length is $\alpha = \frac{n}{m}$ (α is termed the load factor).
- If we choose m (table size) such that n = O(m), then $\alpha = O(1)$.
- Therefore, all operations run in O(1) "on average"
- Note: assuring n = O(m) requires prior estimation of the number of elements n we expect to be inserted into the table, or a mechanism to dynamically update the table size m

Time – Space Tradeoff

• We don't want α to be neither too large (why?) nor too small (why?)

"Good" Hash Functions?

- You may wonder what it practically means to choose h "carefully".
- Is h(id) = id%100 a good hash function for id's?
- When we have some apriori knowledge on the keys, their distribution and properties, etc., we can tailor a specific hash function, that will improve spread-out among table cells.
- However, such knowledge is not always at hand. In addition, as we mentioned, choosing h at random once in a while is a rather good idea.
 - In the data structure course you will define a mechanism called universal families to solve both problems
- Practically, we can expect Python's hash to do a good job.

Python's dict and set

- Python's class dict and class set are both implemented behind the scenes as hash tables.
- This explains why they are such good choices for storing and searching elements. Indeed, we used them (rather than lists for example) for memoization.
- dict and set however do not use chaining to solve collisions. They
 use another approach called open addressing (more later and in the
 data structures course)
- In addition, dict and set are dynamic hash tables they expand and shrink as the load factor becomes too large or too small, respectively.
- The exact details may change between Python versions, due to optimization efforts by the language developers. We will not delve into
 those details.

Hash-ability and Immutability

- Recall class dict allows only immutable keys, and class set allows only immutable members.
- Indeed, hashing mutable objects is highly problematic.
- Suppose we insert a mutable object into a hashtable (or set or dict), then we mutate the object. If the mutated object hash a different hash value, then it is now located at the wrong position in the hash table, and we will not be able to find it.
- With immutable objects, this cannot happen.

Comic Relief*

1st rule of Programming:

If it works don't touch it!..

Implementation in Python

Let us implement our own class Hashtable in Python now.

 We will assume elements have only keys, so we are actually implementing something that resembles Python's sets.

- However, as opposed to Python sets,
 - 1) We will use chaining to resolve collisions.
 - 2) Our table size will be defined at initialization and the table will not be dynamic.

Initializing the Hash Table

```
class Hashtable:
def init (self, m, hash func=hash):
    """ initial hash table, m empty entries """
    self.table = [[] for i in range(m)]
    self.hash mod = lambda key: hash func(key) % m
def repr (self):
    return "".join([str(i) + " " + str(self.table[i]) + "\n"
                      for i in range(len(self.table))])
```

Initializing the Hash Table

```
>>> ht = Hashtable(11)
>>> ht
 []
5 []
10 []
```

Initializing the Hash Table: a Bogus Code

Consider the following alternative initialization:

```
class Hashtable:
    def __init__(self, m, hash_func=hash):
        """ initial hash table, m empty entries """
        self.table = [[]]*m
```

```
>>> ht = Hashtable(11)
>>> ht.table[0].append(5)
>>> ht
0 [5]
1 [5]
...
>>> ht.table[0] == ht.table[1]
True
>>> ht.table[0] is ht.table[1]
True
```

The entries produced by this bogus __init__ are identical. Therefore, mutating one mutate all of them.

Dictionary Operations: Python Code

```
class Hashtable:
    def contains (self, item):
        """ returns True if item in hashtable, False otherwise
            Used by the 'in' operator in Python """
        i = self.hash mod(item)
        chain = self.table[i]
        if item in chain: # calls contains of Python's list
              return True
        else:
            return False
                                             return item in chain
   def insert(self, item):
        """ insert an item into table, if not there """
        i = self.hash mod(item)
        chain = self.table[i]
        if item not in chain:
            chain.append(item)
```

Example: A Very Small Table (n = 14, m = 7)

- In the following slides, there are executions that construct a hash table with m=7 entries. We'll insert n=14 string records in it and check how insertions are distributed, and in particular what the maximum number of collisions per cell is.
- Our hash table will be a list with m = 7 entries. Each entry will contain a list with a variable length. Initially, each entry of the hash table is an empty list.

Example: A Very Small Table (n = 14, m = 7)

```
>>> tribes = ['Reuben', 'Simeon', 'Levi', 'Judah', 'Dan', 'Naphtali',
  'Gad', 'Asher', 'Issachar', 'Zebulun', 'Benjamin', 'Joseph',
  'Ephraim', 'Manasse']
>>> ht = Hashtable(7) # calls init
>>> for name in tribes:
       ht.insert(name)
>>> 'Reuben' in ht # calls contains
True
>>> 'reuben' in ht # calls contains
False
>>> ht # calls repr
      (next slide)
```

Example: A Very Small Table (n = 14, m = 7)

```
>>> ht # calls __repr__
0 []
1 ['Reuben', 'Judah', 'Dan']
2 ['Naphtali']
3 ['Gad', 'Ephraim']
4 ['Levi']
5 ['Issachar', 'Zebulun']
6 ['Simeon', 'Asher', 'Benjamin', 'Joseph', 'Manasse']
```

Example: A slightly larger table (n = 14, m = 21)

```
>>> tribes = ['Reuben', 'Simeon', 'Levi', 'Judah', 'Dan',
  'Naphtali', 'Gad', 'Asher', 'Issachar', 'Zebulun', 'Benjamin',
  'Joseph', 'Ephraim', 'Manasse']
>>> ht = Hashtable(21)
>>> for name in tribes:
       ht.insert(name)
>>> ht # calls repr___
      (next slide)
```

Example: A slightly larger table (n = 14, m = 21)

```
>>> ht # calls repr
0 []
1 []
2 []
3 ['Ephraim']
4 []
5 ['Issachar']
6 ['Benjamin']
7 []
8 ['Judah']
9 ['Naphtali']
10 []
11 []
12 ['Zebulun']
13 ['Manasse']
14 []
15 ['Reuben', 'Dan']
16 []
17 ['Gad']
18 ['Levi']
19 []
20 ['Simeon', 'Asher', 'Joseph']
```

Hashing and User-defined Classes

 So far, we used our Hashtable class to store Python's built-in (immutable) types such as str, tuple and int.

 But what if we want to use Hashtable with a user-defined class (such as class Student)?

Let's explore this gradually.

Hashing class Point

Let's start with a simple experiment:

```
class Point:
    def __init__ (self, x, y):
        self.x = x
        self.y = y

>>> p1 = Point(4,7)
    >>> p2 = Point(4,7)
    >>> hash(p1) == hash(p2)

False
    >>> p1 is p2
False
```

- By default, Python uses the memory address of an object to compute the value of hash on it.
- Is this a problem?

Hashing Python's Types

On the other hand:

```
>>> n1 = 1000
>>> n2 = 1000
>>> hash(n1) == hash(n2)

True
>>> n1 is n2

False
```

```
>>> t1 = (1,2,3)

>>> t2 = (1,2,3)

>>> hash(t1) == hash(t2)

True

>>> t1 is t2

False
```

- Here, Python's hash uses the values of objects, rather than their memory address.
- What do int and tuple (and other hash-able Python types) have that Point doesn't?
- First of all, an implementation for <u>hash</u>, which defines the result of calling Python's hash on an object of this class.

Adding hash to class Point

• Let's go on with our experiment:

```
class Point:
   def init (self, x, y):
      self.x = x
      self.y = y
                                              calls tuple's
                                              hash__ method
   def hash (self):
      return hash( (self.x, self.y) )
  >>> p1 = Point(4,7)
  >>> p2 = Point(4,7)
  >>> hash(p1) == hash(p2) == hash((4,7))
  True ©
  >>> p1 is p2
  False
```

Hashing class Point (cont.)

Are we done?

```
>>> p1 = Point(4,7)
>>> p2 = Point(4,7)
>>> hash(p1) == hash(p2) == hash((4,7))
True ©
>>> ht = Hashtable(7)
>>> ht.insert(p1)
>>> p1 in ht
True © not surprising
>>> p2 in ht
False 😂???
```

What are we missing?

```
>>> ht
0 []
1 []
2 []
3 []
4 []
5 [<__main___.Point object at 0x03663D90>]
6 []
```

Adding eq to class Point

• Let's go on with our experiment:

```
class Point:
   def init (self, x, y):
      self.x = x
      self.y = y
   def hash (self):
      return hash( (self.x, self.y) )
   def eq (self, other):
      return self.x == other.x and self.y == other.y
    >>> p1 = Point(4,7)
                                              calls appropriate
    >>> p2 = Point(4,7)
                                                eq method
    >>> ht = Hashtable(7)
    >>> ht.insert(p1)
    >>> p2 in ht
    True © finally...
```

Hashing User Defined Classes: Summary

- Indeed, there is not much point in having __hash__ without __eq__.
- The former directs us to the appropriate chain
- The latter is needed to compare the searched object to elements within that chain.

- Note: user-defined classes in Python are by default mutable.
- By implementing __hash__ you are "making a promise" that your class will avoid any mutations (there are ways to make this more than just a promise, but it's out of the scope in our course).

Dealing with Collision – Open Addressing (for reference only)

 In open addressing, each slot in the hash table contains at most one item. This obviously implies that n cannot be larger than m.

Each element enters the first vacant cell among a series of hash

outputs:

- Open addressing is important in hardware applications where devices have many slots, but each can only store one item (e.g., fast switches and high-capacity routers). It is also used in python dictionaries and sets.
- There are many approaches to open addressing. A fairly recent one is
 termed cuckoo hashing (Pagh and Rodler, 2001).

A Related Issue: The Birthday Paradox (for reference only)

(figure taken from http://thenullhypodermic.blogspot.co.il/2012_03_01_archive.html)

The Birthday Paradox (for reference only)

- A well known (and not too hard to prove) result is that if we throw n balls at random into m distinct slots, and $n \approx \sqrt{\pi \cdot m/2}$ then with probability about 0.5, two balls will end up in the same slot.
- For m = 365 we get $\sqrt{\pi \cdot 365/2} \approx 23.94$

From Wikipedia: The computed probability of at least two people sharing a birthday versus the number of people

- This gives rise to the so called "birthday paradox" given 24 people with random birth dates (month and day of month), with probability > 0.5 two will have the same birth date
- Thus, if our set of keys is of size $n > \sqrt{\pi \cdot m/2}$ most likely there will be a collision