
Extended Introduction to Computer Science
CS1001.py

Acquaintance with Python
(cont.)

* Slides based on a course designed by Prof. Benny Chor

Chapter A
Lecture 2

Amir Rubinstein, Michal Kleinbort

School of Computer Science
Tel-Aviv University

Fall Semester 2023-4
http://tau-cs1001-py.wikidot.com

http://tau-cs1001-py.wikidot.com/

עדכונים קצרים

פורסם1ב "ת•

בקרוב באתר-שעות הקבלה והחונכות העדכניות •

16-17ראשון : עד הודעה חדשה(אמיר)שעת הקבלה שלי •

אם יהיה ביקוש אקיים שעת קבלה בזום בהמשך השבוע או ביום שישי–

נעשה מאמץ להעלות הקלטות : ממשרתי מילואיםלאור פניה •

לצערנו לעיתים)השיעורים עד סוף היום בו התקיים השיעור

(.ייתכנו עיכובים בשל עניינים טכניים

2

Last Time

• Programing (high level) language  machine code

• IDLE

• Python basics:
 Types (int, float, str)

 Variables

 operators

 Conditionals (but you saw it in the recitations)

3

This Lecture

• Conditional statements

• More on variables, types and operators
– Type bool (Boolean)
– Logical operators (and, or, not)
– Comparison operators (<, <=, >, >=, ==, !=)

• Loops (while, for)

• Collections
– (Type str)
– Type range
– Type list

4

Conditional Statements

• The flow of very simple programs is linear: we execute
one statement after the next, in the order they were
typed.

• However, the flow of most programs depends on values
of variables and relations among them. Conditional
statements are used to split this flow.

melting = 0

boiling = 100

T = 40

if T < melting:

print("ice")

5

cond
TrueFalse

statement

Conditional Statements

if T < melting:

print("ice")

else:

print("liquid or gas")

if T < melting:

print("ice")

else:

if T < boiling:

print("liquid")

else:

print("gas")

6

cond
TrueFalse

statementstatement

cond
TrueFalse

statement

nested ”if”

Conditional Statements
if T < melting:

print("ice")

else:

if T < boiling:

print("liquid")

else:

print("gas")

• We can have 0 or more elif blocks, else is optional

• What’s the difference?

7

==

if T < melting:

print("ice")

elif T < boiling:

print("liquid")

else:

print("gas")

if T < melting:

print("ice")

if T < boiling:

print("liquid")

else:

print("gas")

Important Syntactic Notes
• The colon (:) following the if statement acts as to open a new scope

(similar to opening a parenthesis, or begin, in other programming
languages).

• The print statement in the line below it is indented one tab to the right.
This indicates it is within the scope of this if.

• The first statement not indented this way (in our case, the else) is
outside that scope.

• In IDLE, you can use tabs or spaces for indentation. The width of the tab /
number of spaces must be consistent within a single scope.

• Such consistency across the whole program is highly recommended as
well. However sometimes inconsistency is practically unavoidable (can
you think of such a scenario?)

8

Documenting Your Programs
• An essential part of writing computer code is documenting it.

melting = 0

boiling = 100

T = 40 # room temperature in Celsius

if T < melting:

print("ice") # water below 0 Celsius

elif T < boiling:

print("liquid") # water between 0 and 100 Celsius

else:

print("gas") # water above 100 Celsius

9

Documenting Your Programs
• An essential part of writing computer code is documenting it

– for you to later understand what you had in mind

– For your teammate to be able to coordinate her or his code with yours.

– For the grader or teaching assistant in your class to try and understand your
code, and grade it accordingly, etc., etc…

• To assist in documentation, all programming languages have
comments. Comments are pieces of text that are not interpreted
or executed by the computer.

• The simplest type of comments in Python are one line comments.
They start with the hash character, #, and extend to the end of the
physical line. Note that # within a string is treated as a character
and not as a beginning of a comment.
comments can start at beginning of a line

a=1 # comments can also start after the beginning of a line

"# but this is a string, NOT a comment"
10

11

Comic Relief *

אלו לאורך הסמסטרהצעות לתמונות שיופיעו על שקפים לי אתכם לשלוח אני מזמין *

Boolean Type

• Boolean values are either true or false.

• Note that Python’s True and False are capitalized,
while in most other programming languages they are
not.

• The standard logical operators and, or, not can be
applied to them and generate complex Boolean
expressions from “atomic” ones.

12

George Boole

1815-1864

Boolean Type and Logical Operators

>>> a = True

>>> b = True

>>> c = False

>>> a and b

True

>>> a and c

False

>>> a or c

True

>>> a or False

True

>>> not a

False

13

Binary ops

Unary op

More on Boolean Type

• We could settle with only and and not:

not (a or b) is equivalent to (not a) and (not b)

• You may have seen this equivalence in the Discrete Math
course (De Morgan rules):

A ∨ 𝐵 ≡ 𝐴 ∧ 𝐵

• Similarly, we could settle with or and not.

• In fact, either combination is universal, meaning that it is
enough to represent any logical operator of 1 or more
variables (you may prove this claim in the “computer
structure” course)

14

Exclusive Or (XOR)

• Python does not have a built-in Boolean xor (exclusive or)
operator, which is a highly useful operator:

>>> a = True

>>> b = True

>>> c = False

>>> (a and (not b)) or ((not a) and b)

False

>>> (a and (not c)) or ((not a) and c)

True
15

a xor b

a xor c

Exclusive Or (XOR)

>>> (a and (not b)) or ((not a) and b)

False

>>> (a and (not c)) or ((not a) and c)

True

• It is annoying and time consuming to write and rewrite
the same expression with different variables. We will
address this issue when we discuss functions (in the next
lecture). Then we will be able to write:

>>> xor(a, b)

False

16

Not a built-in Python command.
We will implement it soon

Comparison Operators

• Comparing numbers is important in many contexts.
Python’s comparison operators are intended for
that: they operate on two numbers and return a
Boolean value, indicating equality, inequality, or a
size comparison.

>>> 5 == 5

True

>>> 6 != 6

False

>>> 3 > 2

True

>>> 4 < 3

False

>>> 3 >= 2

True

>>> 4 <= 4

True
17

6≠6

Shortcut for 3>2 or 3==2

Comparison Operators (cont.)

• We can compare numbers of different
types. The interpreter implicitly coerces
(casts) the more restricted type to the
wider one, and performs the comparison.

>>> 19.1 > 7

True

>>> 14.0 == 14

???

18

Check it! Don’t be lazy!

Comparing Booleans

• What about comparing Booleans? Well, instead of guessing, let us try:

>>> True > True

False

>>> True > False

True

>>> False > 2.17

False

>>> 4 + True

5

>>> False * 2

0

>>> True + False

1

• Python “views” True as 1 and False as 0.

>>> True == 1 and False == 0

True

• Yet, we strongly recommend you do not use True and False in
arithmetic contexts

19

Given these examples, how do
you think the interpreter
“views” True and False?

What Else Can We Compare?

>>> "0" == 0

False

>>> "0" > 0

Traceback (most recent call last):

File "<pyshell#19>", line 1, in <module>

"0">0

TypeError: unorderable types: str() > int()

• Fair enough.

• What about comparing strings to strings?

20

Comparing Strings

• What about comparing strings to strings?

>>> "Amir" >= "Amir"

True

>>> "Amir" > "Amir"

False

>>> "Michal" > "Amir"

True

>>> "Amir" > "Michal"

False

>>> "Amirrrrrrrrrr" > "Michal"

False

>>> "cat" > "bat"

True

>>> "cat" > "cut"

False

>>> "cat" > "car"

True
21

Any hypotheses on how Python
compares strings?

Lexicographical (alphabetical) order

• Assumption: the set of alphabet (characters allowed) is
totally ordered. This means that any 2 single characters
can be compared.

• This assumption holds in Python (more details in the
future, but if you are curious, look here)

• Given 2 strings over some totally ordered alphabet

𝑆 = 𝑠0𝑠1 ⋅ ⋅ ⋅ 𝑠𝑛−1 and 𝑇 = 𝑡0𝑡1 ⋅ ⋅ ⋅ 𝑡𝑚−1

𝑆 < 𝑇 if and only if

there exists some 𝑖 ≥ 0 such that

(1) for every 0 ≤ 𝑗 < 𝑖 we have 𝑠𝑗 = 𝑡𝑗 and

(2) either 𝑠𝑖 < 𝑡𝑖 or 𝑖 = 𝑛 < 𝑚.22

https://en.wikipedia.org/wiki/Unicode

• What to do after class:

23

Comic Relief *

אלו לאורך הסמסטרהצעות לתמונות שיופיעו על שקפים לי אתכם לשלוח אני מזמין *

Loops and Iteration

“Iteration means the act of repeating a process usually
with the aim of approaching a desired goal or target
or result. Each repetition of the process is also called
an ‘iteration,’ and the results of one iteration are used
as the starting point for the next iteration.”

(from Wikipedia)

24

Our Example
• It is very common to have a portion of a program where we wish

to iterate the same operation, possibly with different arguments.
For example,

>>> 1+2+3+4+5+6+7+8+9+10

55

• If we just want to add the numbers from 1 to 10, the piece of code
above may be adequate. But suppose that instead, we wish to
increase the summation limit to 100, 1000, or even 10**8.

• We obviously ought to have a more efficient method to express
such iterated addition. We want to iterate over the integers in the
range [1,100], [1,1000], or [1,108], repeatedly, adding the next
element to the partially computed sum.

25

Wait a Minute…

• Do you know young Carl Friedrich Gauss

(1777 – 1855)?

• At the age of six, he allegedly figured out how to
efficiently compute this sum, which is an arithmetic
series.

• Gauss' observation was that 1 + 2 +⋅⋅⋅ +𝑛 =
𝑛 𝑛+1

2
.

• We are not going to use it, though, and simply let
the computer chew its way through the iteration.

26

from Wikipedia

while Loops
n = 10**8

i = 1

s = 0

while i<=n:

s = s+i

i = i+1

#print("i=", i, "s=", s)

print(s)

5000000050000000

• The loop is entered and executed as long as the loop
condition (i<=n in this case) is True.

• Notice the colon and indentation (tabs), which define the
scope (“body”) of the loop27

loop

condition

loop

“body”

outside

loop

while Loops Cavities
n = 10**8

i = 1

s = 0

while i<=n:

s = s+i

i = i+1

#print("i=", i, "s=", s)

print(s)

???

28

Note

this!

while Loops Cavities
n = 10**8

i = n

s = 0

while i<=n:

s = s+i

i = i+1

#print("i=", i, "s=", s)

print(s)

???

29

Note

this!

breaking Loops
n = 10**8

i = 1

s = 0

while i<=n:

s = s+i

i = i+1

if i==100:

break

#print("i=", i, "s=", s)

print(s)

• break terminates the nearest enclosing loop, skipping any
other code that follows the break inside the loop. It may only
occur syntactically in loops. Useful for getting out of loops
when some predefined condition occurs.30

continue-ing Loops
n = 10**8

i = 1

s = 0

while i<=n:

s = s+i

i = i+1

if i==100:

continue

#print("i=", i, "s=", s)

print(s)

• Check it yourselves!

31

for Loops (on strings)
for char in "abcd":

print(char)

a

b

c

d

for char in "abcd":

print((char+"!")*2)

print(str.replace((char+"!")*2, "!", "?"))

???

• for and in are reserved words of Python, causing iterated
execution, where the variable char goes over all elements in
"abcd".

• Notice the colon and indentation, which determine the
scope where the iteration occurs.32

for Loops on range
• Python has a type range, which is an ordered collection of all

integers in a given range.

• range(n) defines the sequence 0, 1, 2, … , 𝑛 − 1

• that is, all integers 𝑘 satisfying 0 ≤ 𝑘 < 𝑛

for num in range(10):

print(num)

0

1

2

3

4

5

6

7

8

9
33

Python’s range
• More generally, range(a,b)for two integers 𝑎, 𝑏, contains all

integers 𝑘 satisfying 𝑎 ≤ 𝑘 < 𝑏.
– Note that if 𝑎 > 𝑏, range(a,b) is empty (however, this is not an error).

– So range(n) is a shorthand for range(0,n).

• Even more generally, range(a,b,d) contains all integers of the
form 𝑎 + 𝑖 ⋅ 𝑑, satisfying 𝑎 ≤ 𝑎 + 𝑖 ⋅ 𝑑 < 𝑏 (𝑖 > 0)
– This is an arithmetic progressions (סדרה חשבונית)

– So range(a,b)is a shorthand for range(a,b,1).

– Note that for 𝑑 = 0, range(a,b,d)results in an error.

– Can we use 𝑑 < 0? Try it!

34

for Loops – Back to Our Example
n = 10**8

s = 0

for i in range(1,n+1):

s = s+i

print(s)

5000000050000000

35

Yet another Solution,
using Python’s Built-in sum

• Summation over a structure is so common that Python has a
built-in function for it, sum, enabling an even more concise
code.

>>> n = 10**8

>>> sum(range(1,n+1))

5000000050000000

36

Comparing Solution’s Efficiency
• Young Gauss' observation enabled him to calculate the sum
1 + 2 +⋅⋅⋅ +100 very fast.

1 + 2 +⋅⋅⋅ +𝑛 =
𝑛 𝑛 + 1

2

• In modern terminology, we could say that his method,
requiring only one addition, one multiplication and one
division, is much more computationally efficient than our
method, requiring exactly 𝑛 − 1 addition operations.

• We will define these notions in a precise manner in one of
the next lectures, on complexity.

37

Comparing Solution’s Efficiency
>>> n = 10**8

>>> sum(range(1,n+1))

5000000050000000

• Computing this sum takes almost 108 additions. Even
without measuring it, the time taken for the computation to
complete is noticeable.

>>> n*(n+1)//2

5000000050000000

• Computing this sum “the Gauss way” requires only 3
arithmetic operations and is noticeably faster.

• Good algorithms often succeed to tackle problems in non-
obvious ways, and dramatically improve their efficiency.

38

39

Comic Relief *

אלו לאורך הסמסטרהצעות לתמונות שיופיעו על שקפים לי אתכם לשלוח אני מזמין *

http://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCL38tO_588gCFQeeDgodk9oF4w&url=http://www.devtopics.com/best-programming-jokes/&bvm=bv.106379543,d.ZWU&psig=AFQjCNEshJDT9Bwr4wcqYj-ArZ2_iSTUtw&ust=1446629244273086

Type list

40

• str in Python is a sequence (ordered collection) of characters
• range in Python is a sequence (ordered collection) of integers
• list in Python is a sequence (ordered collection) of elements (of any type)

• The simplest way to create a list in Python is to enclose its
elements in square brackets:

>>> my_list = [2, 3005, 50, 746, 11111]

>>> my_list

[2, 3005, 50, 746, 11111]

Lists (and strings) are Indexable

41

• Elements of lists and strings can be accessed via their
position, or index. This is called direct access
(aka “random access”)

• In this respect, lists are similar to arrays in other
programming languages (yet they differ in other aspects)

• Indices in Python start with 0, not with 1

>>> my_list = [2, 3005, 50, 746, 11111]

>>> my_list[0]

2

>>> my_list[4]

11111

>>> my_list[5]

Traceback (most recent call last):

File "<pyshell#7>", line 1, in <module>

my list[5]

IndexError: list index out of range

len()

42

• Quite often, the length is a useful quantity to have.

• len returns the length (number of elements) of a collection

>>> len("abcd")

4

>>> my_list = [2, 3005, 50, 746, 11111]

>>> len(my_list)

5

>>> len([])

0

>>> len([1,2,3] + ["a", "b"])

5

• Collections in Python store and maintain their length, so
applying len() to them involves merely a single memory read
operation, thus is efficient

List concatenation

Iterating over Lists and Strings

43

• Recall that for loops allow simple iteration over collections:

for ch in "abc":

print(ch)

a

b

c

for x in [55, -6, 7, 8]:

print(x)

55

-6

7

8

for x in collection:

do something with x

Iteration using range

44

for k in L:

print(k)

for i in range(len(L)):

print(L[i])

for x in sequence:

do something with x

for i in range(len(sequence)):

do something with sequence[i]

L = [11, 12, 13]

L = [11, 12, 13]

Slicing Lists and Strings

• Slicing allows creating a new list (or string) from an existing
one, where the new list (string) is composed of an ordered
subset of the original one

• Slicing merely provides a convenient shorthand for a loop

• Slicing has many parameters and options. You should neither
be overwhelmed by this, nor are you expected to digest and
memorize all options right away. You should know the options
exist and how to look them up.

46

Slicing – examples

>>> num_list = [11,12,13,14,15,16,17,18,19,20]

>>> len(num_list)

10

>>> num_list[1:5] slicing

[12,13,14,15]

>>> num_list[0:10:2] slicing an arithmetic progression

[11,13,15,17,19]

>>> num_list[::2] shorthand for previous slicing

[11,13,15,17,19]

>>> num_list[::-1] reversing the list

[20,19,18,17,16,15,14,13,12,11]

47

Slicing - examples (cont.)

>>> num_list[10::-1] same as before

[20,19,18,17,16,15,14,13,12,11]

>>> num_list[-1::-1] index -1 refers to last element

[20,19,18,17,16,15,14,13,12,11]

>>> num_list[-1:-11:-1] and -11 here is one before first

[20,19,18,17,16,15,14,13,12,11]

>>> num_list[8:3:-2] arithmetic progression with δ = -2

[19,17,15]

>>> num_list[3:8:-2] outcome is an empty list, NOT an error

[]

>>> num_list slicing did NOT change original list

[11,12,13,14,15,16,17,18,19,20]

48

They Slice Strings Too, Don't They?

>>> len("Rye Bread")

9

>>> "Rye Bread"[0:9] everything

'Rye Bread'

>>> "Rye Bread"[:] shorthand for previous

'Rye Bread'

>>> "Rye Bread"[:4] first 4 characters

'Rye '

>>> "Rye Bread"[4:] everything but first 4 characters

'Bread'

>>> "Rye Bread"[:4] + "Rye Bread"[4:] concatenate prefix+suffix

'Rye Bread'

49

Sliced Strings (cont.)

>>> "Rye Bread"[0:9:2] every second char, starting from first

'ReBed'

>>> "Rye Bread"[0::2] shorthand for previous

'ReBed'

>>> "Rye Bread"[:9:2] shorthand for previous previous

'ReBed'

>>> "Rye Bread"[::2] shorthand for previous previous previous

'ReBed'

>>> "Rye Bread"[9::-1] everything, backwards

'daerB eyR'

>>> "Rye Bread"[::-1] shorthand for previous

'daerB eyR'

50

Lists and Strings – Summary

• Both lists and strings are examples for
sequences (ordered collections) in python

• Both can be indexed, sliced and iterated over

• More collections (ordered and unordered)
coming soon

51

Lecture 2 - Highlights
• Conditional statements (if-elif-else) allow splitting the program’s flow

into paths

• Don't forget to #document your code

• Boolean values are either True or False
• Logical operators: and, or, not .

• Comparison operators: == != < > <= >=

• Logical and comparison expressions evaluate to Boolean values

• In Python strings are compared lexicographically

• Loops allow repeating a set of operations multiple times (“iterations”)

• while loops - as long as some condition holds
• for loops - over a given collection of elements (e.g., list, string, range)

• Python’s list is an array of elements
– Similar to strings, lists support indexing, iteration, slicing, len()

52

