
Recitation 14 – Error detection and correction 

Index code 
We want to send data of length        bits. 
EC = bitwise XOR over all active indices (containing '1') in data (indices start at 1) 
 
What will be the length of EC? 
The length of EC is be equal to the number of bits required to represent an index   . In order to write 
  in binary the number of bits required is           .  
For       , we get:             

         . 
 
We saw in class d=2. 
 

Improvement 1: transmit EC twice. 

Now d=3 (why?) 
 
 
Decoding algorithm, given that we expect no more than 1 error: 
  
 
 
 
 
 
 
 
 
 
 
  
 
How would we interpret different scenarios of 2 errors?  
Assume p is small (so we always prefer an interpretation with fewer errors). 
 

 2 errors in data: we would think it's 1 error. We would "fix" and insert a third error! 

  example:               

    2+5 = 010+101 = 111 

    we'd conclude the single error is at 111 = 7 

 2 errors at EC1 and EC2: 

- if at the same bit of EC1 and EC2, we'd conclude 1 error in data. 

- if at different bits of EC1 and EC2, we'll know there is >1 error. 

 2 errors at e.g. EC1: we'll know this (the alternative is 3 errors: 1 at data, 2 at EC2 – which is 

less probable). 

 1 error in data and 1 at e.g. EC1 – the 2 options are possible (detecting or "fixing"). 

 

data EC 

data EC1 EC2 

decode (message): 

1. compute EC ' from first k bits (data) 

2. if EC ' = EC1 or EC ' = EC2          #if both hold then 0 errors 

3. return message[:k]  # no error in data 

4. else:     # EC1 = EC2, single error in data 

5. i = EC '   EC1   #or EC2, doesn't matter. Index of error. 

6. return message[:k] with index i switched 



2 
 

Note that we can write an algorithm that corrects up to 1 error, or a different algorithm that detects 
up to 2 errors. But we cannot have an algorithm that does both, since as we saw in some cases we 
cannot distinguish between 1 and 2 errors. 
 

Improvement 2: add parity bit at the end. 

Now d=4 (why?)  
 
Explanation: earlier d was 3. This means that the closest words were 3 bits apart. So such words had 
different parity (3 is odd). Therefore with the addition of a parity bit such words will be 4 bits apart. 
Note that if d was even, a parity bit would not change it. 
 
Now we can detect up to 3 errors and fix up to 1 error. 
 
Claim: we can now distinguish between scenarios of 1 and 2 errors (which we couldn't before). 
 
Proof: parity bit will notify error if and only if number of errors is odd (no matter where they are). 
 
Not done in class: 

A summary of the possible interpretations for various numbers of errors: 
 

#errors EC'= EC1=EC2 parity 

0 V V 

1 X or V* X 

2 X V 

3 X or V** X 

 
V - indicates this part of the error correction code does not notify error. 
X - indicates this part notifies an error. 
X or V – some cases are erroneous and some are not. 
 
 
* if error was in parity bit 
** try to find a case in which this happens 

 
 

data EC1 EC2 p 


