
Index code

msg of length 𝑘 = 2𝑚 − 1 bits.
EC = bitwise XOR over indices of active (1) bits in msg (indices
start at 1)
We transmit EC twice! That is, two copies of EC

example:
 msg = 0110110 (k=23-1)
 indices 1 2 3 4 5 6 7

 2= 010 ⨁
 3= 011 ⨁
 5= 101 ⨁
 6= 110
 EC= 010

 transmission = 0110110010010

Note that: m bits are needed to represent each copy of EC
Explanation:
 decimal x is represented by ⌊log2(𝑥)⌋ + 1 bits.

 |𝑬𝑪| = 𝑶(𝒎) since ⌊log2(2𝑚 − 1)⌋ + 1 = 𝑚

 So we add logarithmically many bits for each copy of EC: n = 2𝑚 − 1 + 𝑂(𝑚)
 (worse than O(1) for parity, better then O(k) for repetition):

Question: d=?
 d>=3: It is not possible to have 2 (legal) codewords of distance < 3:

- If two msgs differ in 1 bit, their EC1 must be different (The ECs will differ
exactly in the positions where the binary representation of the different bit
contains 1)  overall: at least 3 differences between the two codewords.
The same holds for EC2.

- If two msgs differ in 2 bits, both their EC1 and EC2 will differ in at least one
bit. (because two different indices cannot cancel each other in the EC
computation)  overall: at least 4 differences between the two codewords.

d<=3: We give an example of two (legal) codewords of distance 3:
0000000000000 and 0001000100100. (any index which is power of 2 would
work)

d=3

 Can detect 2 errors, fix 1.

msg EC1 EC2

An improvement: add parity bit at the end.

Claim: The distance of the code is d=4.

Proof outline: Before, when d=3, the closest codewords were 3 bits apart. Because they
differed in an odd number of bits, their parity bits are different, and so the total distance
between them (including the parity) is now 4. In addition, the distance between all other
codeword pairs cannot decrease following the addition of a new bit, and therefore the code
distance increased by 1.

In general, if a certain code has distance d, the addition of a parity bit will create a new code
with distance d', such that:

- If the original distance d was odd, then the new distance will be d' = d+1
- If the original distance d was even, then the new distance will be d' = d (distance will

not change).

Since d=4, we can detect 3 errors, fix 1 error.

msg EC1 EC2 p

