Computer Science 1001.py

Lecture 16.5: More Recursion:
The Eight Queens Problem

Instructors: Amiram Yehudai, Amir Rubinstein
Teaching Assistants: Yael Baran, Michal Kleinbort

Founding Teaching Assistant (and Python Guru): Rani Hod

School of Computer Science
Tel-Aviv University, Fall Semester, 2016
http://tau-cs1001-py.wikidot.com

http://tau-cs1001-py.wikidot.com/

The N Queens Problem

The well known 8 queens problem is to determine how many
possibilities are there to legally place 8 queens on an 8-by-8 chess
board. Legally means no queen threatens another queen. Related
questions are finding such placement, if one exists, and/or exploring

the question for different number of queens and different size boards.

We will explore a possible path to the solution, employing several
high tech means (e.g whiteboard, waving hands, etc.).

a b cde f gh

- N W kOO N ®

(figure from Wikipedia)

Ideas

of Recursive Solution: the n Queens Problem

We build the solution incrementally, column by column.
We maintain a partial solution (implemented as a list).
The partial solution is initially empty.

We try to extend partial solutions recursively by placing a queen
in all possible rows in the next column.
We check if adding a queen to a given partial solution is legal. If

it is, the partial solution is extended (and number of remaining
columns decreased by 1).

Once all columns are exhausted, we have a solution
(contributing a 1 to the overall number of solutions).

Whatever we propose here (or elsewhere :-) is not the only possible
approach. We do try, however, to propose a simple solution to the
problem.

Functions and Signatures Used in the n Queens Problem

def

def

queens (n, show=True) :
>’’’ how many ways to place n queens on an nXn board? ’’°

partial = [] # list representing partial placement of queens
return queens_rec(n, partial,show)

queens_rec(n, partial,show):
’?? Given a list representing partial placement of queens,
can we legally extend it 7 7~
if len(partial)==n: #all n queens are placed legally
if show: # show the complete solution
print (partial)
return 1
else:
cnt=0
for i in range(n):
#try to place a queen in row i of the next column
if legal(partial,i):
cnt += queens_rec(n, partial+[i],show)
return cnt

Functions and Signatures Used in the n Queens Problem

def legal(partial, i):
’?? Can we place a queen in the next column in row i 7 777
left = [j for j in partial if j==i]
#any queens in the same row to the left?
diag_up = [j for j in partial
if j-partial.index(j) == i-len(partial)]
#diagonal up-left

diag_down = [j for j in partial
if j+partial.index(j) == i+len(partial)]
#diagonal down-left
res = (left == diag_up == diag_down == [])
print ("partial=",partial,"can add queen at row", i ,"?",res)

return res

Example Executions

>>>
[o]
1
>>>
0
>>>
0
>>>
(1,
[2,
2
>>>
(o,
fo,
[1’
[1,
(2,
2,
3,
(3,
4,
4,
10

queens (1)

queens (2)
queens (3)
queens (4)
3, 0, 2]
0, 3, 1]
queens (5)
2, 4, 1,
3, 1, 4,
3) O’ 2)
4, 2, 0,
o, 3, 1,
4, 1, 3,
o, 2, 4,
1, 4, 2,
i, 3, 0,
2, 0, 3

>

6

Example Executions, cont.

Note that for all n > 1 the number of solutions is even, due to a
simple mirror symmetry.

>>> queens (6)

[1, 3, 5, 0, 2, 4]
[2, 5, 1, 4, 0, 3]
[3, 0, 4, 1, 5, 2]
[4, 2, 0, 5, 3, 1]
4

So the number of solutions to queens (n) does not increase
monotonically with n, as queens(6) = 4 < queens(5) = 10.

>>> for n in range(7,14):
print(n, queens(n,show=False))

7 40

8 92

9 352

10 724

11 2680

12 14200

13 73712

14 365596

15 2279184 # ran overnight

Extensions to the N Queens Problem

Once we understand the solution, fairly simple modifications will yield

e Not just number of solutions, but a list specifying all solutions.
e Placing k queens on an n-by-n board, k < n.

e Placing k queens on an n-by-m board, £k < n < m.

e Placing n rooks on an n-by-n board.

e Placing n bishops on an n-by-n board.

e Mixing queens, bishops, rooks on an n-by-n board (not so
simple, but not that bad either).

Last words about recursion

e Recursion is not an easy topic for beginners.

e We hope the 8 queen example will help you a little with HW4
question 2 (especially section a, where recursion calls occur
inside a loop, much like in the 8 queen problem).

e You may find this blog about recursion interesting and helpful:
http://www.gadial .net/2015/11/03/recusrion.

e Another good source is
http://tau-cs1001-py.wdfiles.com/local--files/
lecture-presentations-2016a/lec16_5.pdf...

http://www.gadial.net/2015/11/03/recusrion
http://tau-cs1001-py.wdfiles.com/local--files/lecture-presentations-2016a/lec16_5.pdf
http://tau-cs1001-py.wdfiles.com/local--files/lecture-presentations-2016a/lec16_5.pdf

