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The N Queens Problem

The well known 8 queens problem is to determine how many
possibilities are there to legally place 8 queens on an 8-by-8 chess
board. Legally means no queen threatens another queen. Related
questions are finding such placement, if one exists, and/or exploring

the question for different number of queens and different size boards.

We will explore a possible path to the solution, employing several
high tech means (e.g whiteboard, waving hands, etc.).
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(figure from Wikipedia)



Ideas

of Recursive Solution: the n Queens Problem

We build the solution incrementally, column by column.
We maintain a partial solution (implemented as a list).
The partial solution is initially empty.

We try to extend partial solutions recursively by placing a queen
in all possible rows in the next column.
We check if adding a queen to a given partial solution is legal. If

it is, the partial solution is extended (and number of remaining
columns decreased by 1).

Once all columns are exhausted, we have a solution
(contributing a 1 to the overall number of solutions).

Whatever we propose here (or elsewhere :-) is not the only possible
approach. We do try, however, to propose a simple solution to the
problem.



Functions and Signatures Used in the n Queens Problem

def

def

queens (n, show=True) :
>’’’ how many ways to place n queens on an nXn board? ’’°

partial = [] # list representing partial placement of queens
return queens_rec(n, partial,show)

queens_rec(n, partial,show):
’?? Given a list representing partial placement of queens,
can we legally extend it 7 7~
if len(partial)==n: #all n queens are placed legally
if show: # show the complete solution
print (partial)
return 1
else:
cnt=0
for i in range(n):
#try to place a queen in row i of the next column
if legal(partial,i):
cnt += queens_rec(n, partial+[i],show)
return cnt



Functions and Signatures Used in the n Queens Problem

def legal(partial, i):
’?? Can we place a queen in the next column in row i 7 777
left = [j for j in partial if j==i]
#any queens in the same row to the left?
diag_up = [j for j in partial
if j-partial.index(j) == i-len(partial)]
#diagonal up-left

diag_down = [j for j in partial
if j+partial.index(j) == i+len(partial)]
#diagonal down-left
res = (left == diag_up == diag_down == [])
# print ("partial=",partial,"can add queen at row", i ,"?",res)

return res



Example Executions
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Example Executions, cont.

Note that for all n > 1 the number of solutions is even, due to a
simple mirror symmetry.

>>> queens (6)

[1, 3, 5, 0, 2, 4]
[2, 5, 1, 4, 0, 3]
[3, 0, 4, 1, 5, 2]
[4, 2, 0, 5, 3, 1]
4

So the number of solutions to queens (n) does not increase
monotonically with n, as queens(6) = 4 < queens(5) = 10.

>>> for n in range(7,14):
print(n, queens(n,show=False))

7 40

8 92

9 352

10 724

11 2680

12 14200

13 73712

14 365596

15 2279184 # ran overnight



Extensions to the N Queens Problem

Once we understand the solution, fairly simple modifications will yield

e Not just number of solutions, but a list specifying all solutions.
e Placing k queens on an n-by-n board, k < n.

e Placing k queens on an n-by-m board, £k < n < m.

e Placing n rooks on an n-by-n board.

e Placing n bishops on an n-by-n board.

e Mixing queens, bishops, rooks on an n-by-n board (not so
simple, but not that bad either).



Last words about recursion

e Recursion is not an easy topic for beginners.

e We hope the 8 queen example will help you a little with HW4
question 2 (especially section a, where recursion calls occur
inside a loop, much like in the 8 queen problem).

e You may find this blog about recursion interesting and helpful:
http://www.gadial .net/2015/11/03/recusrion.

e Another good source is
http://tau-cs1001-py.wdfiles.com/local--files/
lecture-presentations-2016a/lec16_5.pdf...
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