
Computer Science 1001.py

Lecture 16.5: More Recursion:
The Eight Queens Problem

Instructors: Amiram Yehudai, Amir Rubinstein
Teaching Assistants: Yael Baran, Michal Kleinbort

Founding Teaching Assistant (and Python Guru): Rani Hod

School of Computer Science
Tel-Aviv University, Fall Semester, 2016

http://tau-cs1001-py.wikidot.com

http://tau-cs1001-py.wikidot.com/

The N Queens Problem
The well known 8 queens problem is to determine how many
possibilities are there to legally place 8 queens on an 8-by-8 chess
board. Legally means no queen threatens another queen. Related
questions are finding such placement, if one exists, and/or exploring
the question for different number of queens and different size boards.

We will explore a possible path to the solution, employing several
high tech means (e.g whiteboard, waving hands, etc.).

(figure from Wikipedia) 2 / 9

Ideas of Recursive Solution: the n Queens Problem

• We build the solution incrementally, column by column.

• We maintain a partial solution (implemented as a list).

• The partial solution is initially empty.

• We try to extend partial solutions recursively by placing a queen
in all possible rows in the next column.

• We check if adding a queen to a given partial solution is legal. If
it is, the partial solution is extended (and number of remaining
columns decreased by 1).

• Once all columns are exhausted, we have a solution
(contributing a 1 to the overall number of solutions).

Whatever we propose here (or elsewhere :-) is not the only possible
approach. We do try, however, to propose a simple solution to the
problem.

3 / 9

Functions and Signatures Used in the n Queens Problem

def queens(n,show=True):

’’’ how many ways to place n queens on an nXn board? ’’’

partial = [] # list representing partial placement of queens

return queens_rec(n, partial ,show)

def queens_rec(n, partial ,show):

’’’ Given a list representing partial placement of queens ,

can we legally extend it ? ’’’

if len(partial)==n: #all n queens are placed legally

if show: # show the complete solution

print(partial)

return 1

else:

cnt=0

for i in range(n):

#try to place a queen in row i of the next column

if legal(partial ,i):

cnt += queens_rec(n, partial +[i],show)

return cnt

4 / 9

Functions and Signatures Used in the n Queens Problem

def legal(partial , i):

’’’ Can we place a queen in the next column in row i ? ’’’

left = [j for j in partial if j==i]

#any queens in the same row to the left?

diag_up = [j for j in partial

if j-partial.index(j) == i-len(partial)]

#diagonal up-left

diag_down = [j for j in partial

if j+partial.index(j) == i+len(partial)]

#diagonal down -left

res = (left == diag_up == diag_down == [])

print (" partial=",partial ,"can add queen at row", i ,"?",res)

return res

5 / 9

Example Executions
>>> queens (1)

[0]

1

>>> queens (2)

0

>>> queens (3)

0

>>> queens (4)

[1, 3, 0, 2]

[2, 0, 3, 1]

2

>>> queens (5)

[0, 2, 4, 1, 3]

[0, 3, 1, 4, 2]

[1, 3, 0, 2, 4]

[1, 4, 2, 0, 3]

[2, 0, 3, 1, 4]

[2, 4, 1, 3, 0]

[3, 0, 2, 4, 1]

[3, 1, 4, 2, 0]

[4, 1, 3, 0, 2]

[4, 2, 0, 3, 1]

10

6 / 9

Example Executions, cont.
Note that for all n > 1 the number of solutions is even, due to a
simple mirror symmetry.
>>> queens (6)

[1, 3, 5, 0, 2, 4]

[2, 5, 1, 4, 0, 3]

[3, 0, 4, 1, 5, 2]

[4, 2, 0, 5, 3, 1]

4

So the number of solutions to queens(n) does not increase
monotonically with n, as queens(6) = 4 < queens(5) = 10.
>>> for n in range (7 ,14):

print(n, queens(n,show=False))

7 40

8 92

9 352

10 724

11 2680

12 14200

13 73712

14 365596

15 2279184 # ran overnight

>>> queens (15)

2279184

7 / 9

Extensions to the N Queens Problem

Once we understand the solution, fairly simple modifications will yield

• Not just number of solutions, but a list specifying all solutions.

• Placing k queens on an n-by-n board, k ≤ n.

• Placing k queens on an n-by-m board, k ≤ n ≤ m.

• Placing n rooks on an n-by-n board.

• Placing n bishops on an n-by-n board.

• Mixing queens, bishops, rooks on an n-by-n board (not so
simple, but not that bad either).

8 / 9

Last words about recursion

• Recursion is not an easy topic for beginners.

• We hope the 8 queen example will help you a little with HW4
question 2 (especially section a, where recursion calls occur
inside a loop, much like in the 8 queen problem).

• You may find this blog about recursion interesting and helpful:
http://www.gadial.net/2015/11/03/recusrion.

• Another good source is
http://tau-cs1001-py.wdfiles.com/local--files/

lecture-presentations-2016a/lec16_5.pdf...

9 / 9

http://www.gadial.net/2015/11/03/recusrion
http://tau-cs1001-py.wdfiles.com/local--files/lecture-presentations-2016a/lec16_5.pdf
http://tau-cs1001-py.wdfiles.com/local--files/lecture-presentations-2016a/lec16_5.pdf

