
Intro-To-CS

Rec-4: Page Rank



PageRank
• How did people surf the web?
• Go to a page by a known link.
• Follow links within the page.
• Repeat.

• A need to rank the pages’ importance.
• E.g., as part of a search engine.

• Page Rank (1996)
• By Larry Page and Sergey Brin, Stanford, 1996.
• Followed by the foundation of Google.
• Ranks each webpage via an importance score.



Internet à Network Graph
• Can model the internet in a graph.
• Each node, 𝑎: a webpage.
• Each edge 𝑎 → 𝑏: a link from web 𝑎 to web 𝑏.
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PageRank – Algorithm
• Input: Network 𝐺, time 𝑡, damping factor 0 < 𝑝 < 1
• Output: Weights (ranks) of pages in G

• Algorithm:
• Initialize the current node (𝑐𝑢𝑟𝑟) to 0
• Initialize a 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 for each page in 𝐺

• For 𝑡 times:
• With probability 𝑝: 𝑐𝑢𝑟𝑟 = random link from 𝑐𝑢𝑟𝑟
• Otherwise: 𝑐𝑢𝑟𝑟 = random page in𝐺
• Increase the counter of curr by 1

• Return the !"#$
!% &'()*$+
* for each page in G



Python implementation
• Need to represent the graph as a Python object.
• Formally, the network is made up of two objects:
• A set of 𝒏 pages (which we call 0,… , 𝑛 − 1).
• A set of links of from one page to another.

• (𝑖, 𝑗) with 0 ≤ 𝑖, 𝑗 < 𝑛 means that page 𝑖 has a link pointing to page 𝑗.

• Our choice: Nested list of size 𝑛 which we call 𝐺.
• The element 𝐺[𝑖] represents the links leaving page 𝑖

(i.e., a list containing other numbers in the range 0,… , 𝑛 − 1).



Graph example
• The set of pages is 0,… , 4
• The set of links is: 1, 2 , 1, 3 , 3, 0 ,	
3, 2 , 3, 4 , 4, 0 , 4,3
• The “Pythonic” representation is:

𝑮	 = 	 [	[	], [𝟐, 𝟑], [	], [𝟎, 𝟐, 𝟒], [𝟎, 𝟑]]



Implementing the algorithm
• Algorithm (𝑮, 𝒕, 𝒑) :
• Initialize the current node (𝑐𝑢𝑟𝑟) to 0
• Initialize a 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 for each page in 𝐺

• For 𝑡 times:
• With probability 𝑝: 𝑐𝑢𝑟𝑟 = random link from 𝑐𝑢𝑟𝑟
• Otherwise: 𝑐𝑢𝑟𝑟 = random page in𝐺
• Increase the counter of curr by 1

• Return the !"#$
!% &'()*$+
* for each page in G

• There are various methods of dealing with 
sink pages (those with no outgoing links).

• Our choice today: if 𝑐𝑢𝑟𝑟 is at a sink, we 
jump arbitrarily.



Accuracy and confidence
• We run the algorithm for 𝑡 steps and return the weights.
• How do we know if these weights are accurate?
• What does accurate even mean?

• Claim (some math needed, we won’t prove it): if 𝑝 < 1, then there is a 
unique set of weights 𝑤∗.

(that is, the limit of this process as 𝑡 → ∞ exists and is unique).

• Not true if 𝑝 = 1, easy example?
• We call our weights 𝑤 and the “real” weights 𝑤∗.
• When do we say that 𝑤 is “close” to 𝑤∗?



Accuracy and confidence (cont.)
• We define the distance between the weights to be the sum of the 

absolute values of the differences: 𝑑 𝑤,𝑤∗ = ∑"#$%&' |𝑤 𝑖 − 𝑤∗[𝑖]|

• If 𝑑 𝑤,𝑤∗ = 0, we are clearly done.
• Problem?

• WE DON’T KNOW 𝑤∗!!!

• Solution: 
• Denote 𝑤* as the set of weights at time 𝑡 
• Denote 𝑤*01 as the set of weights at time 𝑡 + 1.
• Then if 𝑑 𝑤*, 𝑤*01 = 0 we are also done; the system is pretty stable.
• A bit ambitious…

• So, we choose some small 𝜖 > 0 such that if 𝑑 𝑤(, 𝑤()' < 𝜖 we stop the process.


