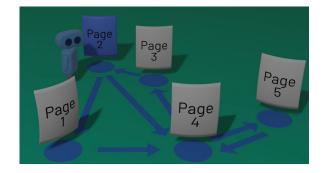


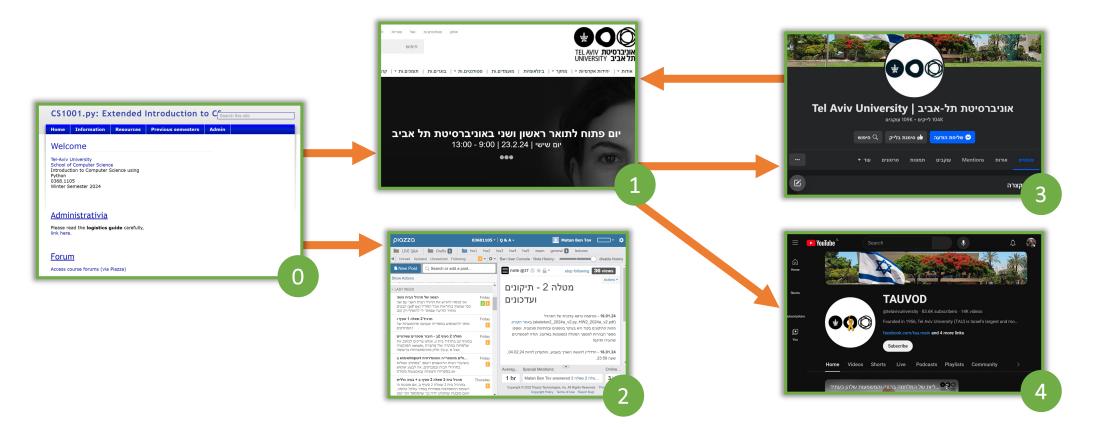
PageRank

- How did people surf the web?
 - Go to a page by a known link.
 - Follow links within the page.
 - Repeat.
- A need to rank the pages' importance.
 - E.g., as part of a **search engine**.
- Page Rank (1996)
 - By Larry Page and Sergey Brin, Stanford, 1996.
 - Followed by the foundation of Google.
 - Ranks each webpage via an importance score.



Internet -> Network Graph

- Can model the internet in a graph.
- Each node, a: a webpage.
- Each edge $a \rightarrow b$: a link from web a to web b.



PageRank – Algorithm

- Input: Network G, time t, damping factor 0
- Output: Weights (ranks) of pages in G

- Algorithm:
 - Initialize the current node (curr) to 0
 - Initialize a *counter* for *each* page in *G*
 - For *t* times:
 - With probability p: curr = random link from curr
 - Otherwise: curr = random page in G
 - Increase the counter of curr by 1
 - Return the $\frac{Page's\ counter}{t}$ for each page in G



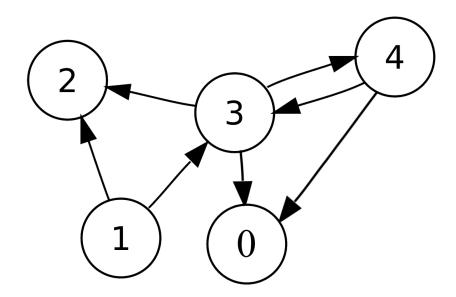
Python implementation

- Need to represent the graph as a Python object.
- Formally, the network is made up of two objects:
 - A set of n pages (which we call 0, ..., n-1).
 - A set of links of from one page to another.
 - (i,j) with $0 \le i,j < n$ means that page i has a link pointing to page j.
- Our choice: **Nested list** of size *n* which we call *G*.
 - The element G[i] represents the links leaving page i (i.e., a list containing other numbers in the range 0, ..., n-1).

Graph example

- The set of pages is $0, \dots, 4$
- The set of links is: (1, 2), (1, 3), (3, 0), (3, 2), (3, 4), (4, 0), (4,3)
- The "Pythonic" representation is:

$$G = [[], [2, 3], [], [0, 2, 4], [0, 3]]$$



Implementing the algorithm

- Algorithm (*G*, *t*, *p*): curr = 0• Initialize the current node (curr) to 0 Initialize a counter for each page in G counter = [0 for i in range(len(G))] • For *t* times: • With probability p: curr = random link from curr <curr = random.choice(G[curr] Otherwise: $curr = random page in G \leftarrow$ curr = random.randrange(len(G)) Increase the counter of curr by 1 • Return the <u>Page's counter</u> for each page in G counter[curr] += 1
- There are various methods of dealing with sink pages (those with no outgoing links).

[cnt/t for cnt in counter]

• Our choice today: if *curr* is at a sink, we jump arbitrarily.

Accuracy and confidence

- We run the algorithm for t steps and return the weights.
 - How do we know if these weights are accurate?
 - What does accurate even mean?
- Claim (some math needed, we won't prove it): if p < 1, then there is a unique set of weights w^* .

(that is, the limit of this process as $t \to \infty$ exists and is unique).

- Not true if p = 1, easy example?
- We call our weights w and the "real" weights w^* .
- When do we say that w is "close" to w^* ?

Accuracy and confidence (cont.)

- We define the **distance** between the **weights** to be the sum of the absolute values of the differences: $d(w, w^*) = \sum_{i=0}^{n-1} |w[i] w^*[i]|$
- If $d(w, w^*) = 0$, we are clearly **done**.
- Problem?
 - WE DON'T KNOW $w^*!!!$

• Solution:

- Denote w_t as the set of weights at time t
- Denote w_{t+1} as the set of weights at time t+1.
- Then if $d(w_t, w_{t+1}) = 0$ we are also **done**; the system is pretty **stable**.
- A bit ambitious...
 - So, we choose some small $\epsilon > 0$ such that if $d(w_t, w_{t+1}) < \epsilon$ we stop the process.