
Intro-To-CS
Rec-10: Compression Algorithm

Compression

• Scenario: communicating over “expensive” line.
• Goal: zip function, 𝑓: Σ → 0,1 ∗.
• Lossless Reconstruction: easily invertible (i.e., 𝑓!").
• Size Efficiency: good compression (i.e., |𝑓 𝑡𝑒𝑥𝑡 | ≪ |𝑡𝑒𝑥𝑡|).

• Impossible to perfect both, why?
• 𝑓 must be injective.
• If some strings are “zipped” others must “expand”.

• But..
• Do we care for all the strings?
• What’s special about of strings of interest?

Huffman Coding

Huffman Coding
• Main idea: chars in human text do not distribute uniformly.
• Use corpus to build compression function 𝐻: Σ → 0,1 ∗

• Frequent letters → short encoding.
• Scheme:
• Alice: compress message with 𝐻(𝑚𝑠𝑔).
• Bob: decompress message (with 𝐻!").

• Which corpus?

Corpus
“It was the best of times, it was the worst of
times, it was the age of wisdom, it was the
age of foolishness, it was the epoch of
belief, it was the epoch of incredulity, it was
the season of light, it was the season of
darkness, …

𝐻
Huffma

n

Huffman Coding - Stages

Corpus
“It was the best of times, it was the worst of
times, it was the age of wisdom, it was the
age of foolishness, it was the epoch of
belief, it was the epoch of incredulity, it was
the season of light, it was the season of
darkness, …

𝐻
Frequency List

‘a’ à 2 ‘b’ à 5

‘d’ à 8 ‘e’ à 5

Forest to Tree

Huffman Coding – Forest Stage
corpus = ‘aaaabbcdddeee’

‘a’, 4 ‘b’, 2 ‘c’, 1 ‘d’, 3 ‘e’, 3

Pseudocode:
build 𝒇𝒐𝒓𝒆𝒔𝒕 from corpus

Init forest with frequencies
nodes

while |𝑓𝑜𝑟𝑒𝑠𝑡| 	> 	1:
 Extract 2 min trees: t1, t2
 Union t’ = t1 + t2
 Put t’ in forest

Huffman Coding - Forest Stage

‘a’, 4 ‘b’, 2

‘c’, 1

‘d’, 3 ‘e’, 3

‘b’, 2

3

‘c’, 1 ‘b’, 2

3

Pseudocode:
build 𝒇𝒐𝒓𝒆𝒔𝒕 from corpus

Init forest with frequencies
nodes

while |𝑓𝑜𝑟𝑒𝑠𝑡| 	> 	1:
 Extract 2 min trees: t1, t2
 Union t’ = t1 + t2
 Put t’ in forest

corpus = ‘aaaabbcdddeee’

Huffman Coding - Forest Stage

‘a’, 4 ‘d’, 3 ‘e’, 3‘c’, 1 ‘b’, 2

3 ‘d’, 3

6

‘a’, 4‘e’, 3

7

Pseudocode:
build 𝒇𝒐𝒓𝒆𝒔𝒕 from corpus

Init forest with frequencies
nodes

while |𝑓𝑜𝑟𝑒𝑠𝑡| 	> 	1:
 Extract 2 min trees: t1, t2
 Union t’ = t1 + t2
 Put t’ in forest

corpus = ‘aaaabbcdddeee’

Huffman Coding

‘c’, 1 ‘b’, 2

3 ‘d’, 3

6

‘a’, 4‘e’, 3

7‘a’, 4‘e’, 3

7

13

Pseudocode:
build 𝒇𝒐𝒓𝒆𝒔𝒕 from corpus

Init forest with frequencies
nodes

while |𝑓𝑜𝑟𝑒𝑠𝑡| 	> 	1:
 Extract 2 min trees: t1, t2
 Union t’ = t1 + t2
 Put t’ in forest

corpus = ‘aaaabbcdddeee’

Huffman Coding – Extract Code corpus = ‘aaaabbcdddeee’

‘c’, 1 ‘b’, 2

3 ‘d’, 3

6

‘a’, 4‘e’, 3

7

13

0 1

0 1 0 1

0 1

• 𝐻 ′𝑐$ = 000
• 𝐻 ′𝑏$ = 001
• 𝐻 ′𝑑$ = 01
• 𝐻 ′𝑒$ = 10
• 𝐻 ′𝑎$ = 11

Pseudocode:
color 𝑒𝑑𝑔𝑒𝑠
Left=0, right=1
Define 𝐻 𝑐 ≔ 𝑝𝑎𝑡ℎ(𝑟𝑜𝑜𝑡 → 𝑐)

Huffman Coding Claim: Chars ↔ leaves.
Proof: Induction on |𝑓𝑜𝑟𝑒𝑠𝑡|.

Claim: Huffman Code is prefix free*.
Proof: If not, 𝐻 𝑥 = 𝐻 𝑦 +⋯
but then 𝑥 is descendant of 𝑦…
Why is this important?

Claim: Each is either a leaf or have
two children.

‘c’, 1 ‘b’, 2

3 ‘d’, 3

6

‘a’, 4‘e’, 3

7

13

0 1

0 1 0 1

0 1

*Prefix free code means no codeword is a prefix of another.

Compressing and decompressing
• 𝐻 ′𝑐$ = 000
• 𝐻 ′𝑏$ = 001
• 𝐻 ′𝑑$ = 01
• 𝐻 ′𝑒$ = 10
• 𝐻 ′𝑎$ = 11

Alice: 𝐻(‘𝑏𝑎𝑏𝑑’) 	= 	0011100101
Bob: 0011100101
• 0?
• 00?
• 001? b
Bob: 0011100101
• 1?
• 11? a
Bob: 0011100101...

Compressing and decompressing
• 𝐻 ′𝑐$ = 000
• 𝐻 ′𝑏$ = 001
• 𝐻 ′𝑑$ = 01
• 𝐻 ′𝑒$ = 10
• 𝐻 ′𝑎$ = 11Why does it work?

Imagine:
• 𝑓 ′𝑎! = 1
• 𝑓 ′𝑏! = 01
• 𝑓 ′𝑐! = 011
Alice: ‘c’	→ 011
Bob: 011	→ ’ba’

𝐻 is prefix free! 𝑓 is not.

Alice: 𝐻(‘𝑏𝑎𝑏𝑑’) 	= 	0011100101

Prefix Free and Uniquely Decodable
Let 𝑓: Σ → 0,1 ∗ be a compression scheme
• We say 𝑓 is Prefix Free if 𝑓(𝑥) is never a prefix of 𝑓 𝑦 .
• We say 𝑓 is Uniquely Decodable if for any string 𝑚
∈ 0,1 ∗ there is at most 1 message 𝜎"…𝜎# ∈ Σ# such
that 𝑓 𝜎"…𝜎# = 𝑚.
• Said differently, 𝑓’s codes are invertible.

Claim: PF → UD
Other direction?

PF Not PF

UD
𝑎 → 011
𝑏 → 10

(Huffman)

𝑎 → 0
𝑏 → 01

Not UD X
𝑎 → 0
𝑏 → 01
𝑐 → 001

msg = 001
ab? c?

How to decode?

Prefix Free and Uniquely Decodable

Optimality
Claim: Among all codes 𝐶 in which each character is
encoded separately, Huffman is optimal!

• Optimal := minimizes ∑$<∈&	(𝑓 𝑎(⋅ 𝑤()
(i.e., minimizing the length of the encoded corpus).

• Where -
• 𝑓(𝑎() is the length of the encoding of 𝑎(.
• 𝑤(is the number of appearances of 𝑎(in the

corpus.
• Interesting when text distributes as corpus.

Example 1

• Draw Huffman tree for a corpus with Σ = 2", where each character
appears once (∀𝑖: 𝑎𝑝𝑝𝑒𝑎𝑟 𝑎# = 1).

𝑎! 𝑎" 𝑎# 𝑎$ 𝑎% 𝑎& 𝑎' 𝑎(

Shortest encoding = longest encoding = n

Example 2

• Draw Huffman tree for a corpus with Σ = 𝑛, where the 𝑖-th character
appears 2# times (0 ≤ 𝑖 ≤ 𝑛 − 1: 𝑎𝑝𝑝𝑒𝑎𝑟 𝑎# = 2#)

𝑎!(2) 𝑎"(4) 𝑎#(8) 𝑎$(16)𝑎) (1)

Example 2

𝑎!(2)

𝑎"(4)

𝑎#(8)

𝑎$(16)

𝑎) (1)

Shortest encoding = 1
longest encoding = n-1

• Draw Huffman tree for a corpus with Σ = 𝑛, where the 𝑖-th character
appears 2# times (0 ≤ 𝑖 ≤ 𝑛 − 1: 𝑎𝑝𝑝𝑒𝑎𝑟 𝑎# = 2#)

Compression ratio

• compression_ratio(text=“ab”, corpus=“ab”)
à 1/7
• len_compress = 2
• len_ascii = 14

• compression_ratio(text=“hello”, corpus=“a”*100 + {𝑐ℎ ∣ 𝑐ℎ ∈ 	𝑎𝑠𝑐𝑖𝑖})
à 8/7
• Huffman tree for corpus “a”*100 + ascii:

"𝑎"

len=7

len=8For most characters:

Exam question: Alternative Trees

• Definition: Two Huffman trees are alternative if they can be
generated from the same corpus but have different multiset of
lengths.
• “Multiset of length” – the lengths of codewords:

sorted(𝐻 ′𝑎$, 𝐻 ′𝑏$, …)
• Example: corpus = ‘abcdd’
• Lengths: (2, 2, 2, 2) and (1, 2, 3, 3)

Alternative Trees

• Show two alternative trees for corpus = ‘abcdee’

Lengths: (3, 3, 3, 3, 1) and (3, 3, 2, 2, 2)

Alternative Trees

• Prove/disprove: if corpus frequencies are unique, no alt. trees.
• Disprove.
• Key observation: weights are unique initially, but not necessarily

throughout the algorithm execution!

corpus = ‘aa bbb cccc ddddd’

Exam Question (2019aa)

Exam Question (2019aa)

5 ,4 ,3 ,2 ,1 םילקשמ :תידגנ אמגוד ,'א•
.וזה תיסדנהה הרדסל 'גוד םדוקמ וניאר :ןוכנ ,'ב•
𝑎 דימת אוה רוביחה רדס :ןוכנ ,'ג• → 𝑏 → 𝑐 → 𝑑 → 𝑒

d םיימעפמ לודגe לקשמו דחיבa, b, c-מ לודגd לקשמש ןוויכ
.דחיבa, b, c, d-מ לודג ןכלו
.םדוקמ ומכ :תידגנ אמגוד ,'ד•

Exam Question (2019aa)

.ל"נה ץעה תא תונבל ןתינ אל•
.םינב2 וא0 שי תמוצ לכלןמפאה ץעב•

.)הנומתבש ץעב ומכ(דחא ןב םע תמוצןמפאה ץעב ןכתיי אל ,טרפב•

Exam Question (2019aa)

100 ,80 ,80 ,2 ,1 םילקשמ :תידגנ אמגוד ,'א•
%𝑤 :ןוכנ ,'ב• +𝑤& < 𝑤'םגו 𝑤% +𝑤& +𝑤' > 𝑤(,𝑤)
16 ,8 ,4 ,2 ,1 :תידגנ אמגוד ,'ג•
10 ,10 ,1 ,1 ,1 :תידגנ אמגוד ,'ד•

Lempel-Ziv Compression

LZ Compression

• Main idea: human text is repetitive.
• text =‘abcxyabc’ → code = ‘abcxy’, go back 5 chars and repeat 3 chars.

• Succinct: [‘a’, ‘b’, ‘c’, ‘x’, ‘y’, [5, 3]]

• Binary encoding:
• 𝑐 → 𝑏𝑖𝑛(𝑜𝑟𝑑 𝑐)
• 𝑏𝑎𝑐𝑘, 𝑟𝑒𝑝 → 𝑏𝑖𝑛 𝑏𝑎𝑐𝑘 , 𝑏𝑖𝑛 𝑟𝑒𝑝

• Binary decoding (From binary to intermediate rep.)
• 100110101 ?

• chr(100) + chr(110) + chr(101)
• chr(100) + chr(110101)
• chr(100110) + chr(10) + chr(1)
• What about repetitions?

ß Intermediate representation

Problem

LZ Compression - Solution

• Step 1: fix length
• 𝑐ℎ𝑎𝑟 → 𝑎𝑠𝑐𝑖𝑖(𝑐ℎ𝑎𝑟) in exactly 7 bits
• 𝑏𝑎𝑐𝑘, 𝑟𝑒𝑝 → 000…𝑏𝑖𝑛 𝑏𝑎𝑐𝑘 + 000… 	𝑏𝑖𝑛(𝑟𝑒𝑝)

• Requires log |max back| + log |max rep| bits

• Step 2: add indicator to distinguish between char and repetition
• 𝑐ℎ𝑎𝑟 → 𝟎 + 𝑎𝑠𝑐𝑖𝑖(𝑐ℎ𝑎𝑟)

• Requires 8 bits
• 𝑏𝑎𝑐𝑘, 𝑟𝑒𝑝 → 𝟏 + 000…𝑏𝑖𝑛 𝑏𝑎𝑐𝑘 + 000… 	𝑏𝑖𝑛(𝑟𝑒𝑝)

• Requires 1 + log |max back| + log |max rep| bits
• If |max 𝑏𝑎𝑐𝑘| = |max 𝑟𝑒𝑝| = 𝑛, each rep. takes 𝑂(log 𝑛) bits
• Choose |max 𝑏𝑎𝑐𝑘|, |max 𝑟𝑒𝑝| = 𝑂(1). Why?

LZ Compression

• We chose log |max 𝑏𝑎𝑐𝑘| = 12, log |max 𝑟𝑒𝑝| = 5.
• Thus, we pay 𝟏𝟖 bits for this suffix.

• A repetition of 1-2 chars is bad (8 < 18).
• And 3? 4? …?
• In class we saw how to find these “good” repetitions.

More examples

• “abcab”à[‘a’, ’b’, ’c’, ’a’, ’b’]
• “abcabcdabc”à[‘a’, ‘b’, ‘c’, [3,3], ‘d’, [4, 3]]
• “a”*10 à [‘a’, [1,9]]
• “a”*40 à[‘a’, [1, 31], [1, 8]]

Compression ratio

• lz_ratio(“hello”) à 8/7
• Intermediate rep. [‘h’, ‘e’, ‘l’, ’l’, ‘o’]
• len_compress = 5 ⋅ 8 + 0 ⋅ 18
• len_ascii = 5 ⋅ 7

• lz_ratio(“hello”*2) à 0.82857…
• Intermediate rep. [‘h’, ‘e’, ‘l’, ’l’, ‘o’, [5,5]]
• len_compress = 5 ⋅ 8 + 1 ⋅ 18
• len_ascii = 10 ⋅ 7

LZ performance

• Empirically, LZ performs very well over human text.
• In fact, still in use (WinZip, 7zip).

Exam questions (2020bb)

• For a string 𝑆 let ℓ?@(𝑆) denote the bit-length of the compressed
string 𝐿𝑍(𝑆).
• We assume the presented parametrization.

• Prove/disprove: for any string 𝑆, ℓ?@ 𝑆 == ℓ?@(𝑆 ∷ −1)
• False! 𝑆	 = 	“𝑎𝑎𝑎𝑎𝑏𝑎𝑎𝑎𝑐”	
• Recall: A repetition of 1-2 chars is not taken (8,16 < 18).
• Key observation: the repetition “aaa” can be compressed after

reading “aaaa” but not before it.

Exam questions (2020bb)

• For a string 𝑆 let ℓ?@(𝑆) denote the bit-length of the compressed
string 𝐿𝑍(𝑆).
• We assume the presented parametrization.

• Prove/disprove: for any string S, 𝐿?@ 𝑆 < 𝐿?@(𝑆 + "𝑎")
• False! S = “aaaa”
• Key observation: the last “a” can be “absorbed” in a repetition.

Exam questions (2020bb)

• For a string 𝑆 let ℓ?@(𝑆) denote the bit-length of the compressed
string 𝐿𝑍(𝑆).
• We assume the presented parametrization.

• Prove/disprove: for any strings S, R 𝐿?@ 𝑆 + 𝑅 = 𝐿?@ 𝑆 + 𝐿?@(𝑅)
• False! S = R = “aa”
• Key observation: S+R can contain a new repetition.

